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SECTION I

INTRODUCTION

The metal forming processes basically involve large amounts of elastic
deformation, and, due to the complexities of plasticity, the exact analysis
of a process is infeasible in most of the cases. Thus, a number of approxi-
mate methods have been suggested, with varying degrees of approximation and
idealization. Among these, techniques using the finite-element method take
precedence because of their flexibility, ability to obtain a detailed solution,
and the inherent proximity of their solutions to the exact one.

A prime objective of mathematical analysis of metalworking processes is
to provide necessary information for proper design and control of these
processes. Therefore, the method of analysis must be capable of determining
the effects of various parameters on metal flow characteristics. Furthermore,
the computation efficiency, as well as solution accuracy, is an important
consideration for the method to be useful in analyzing metalworking problems.

With this viewpoint in mind, successful efforts have been carried out
in analyzing various deformation processes, such as compression, heading,
piercing, extrusion and drawing by the rigid-plastic, finite-element method
(matrix method) [1]-[7].

The formulation of the matrix method, however, cannot be extended to
the sheet-metal forming analysis due to the following reasons:

(1) The classical variational formulation which is the basis of the

matrix method does not necessarily determine a unique deformation
mode. Physically, there is no inherent indeterminacy for work-

hardening solids, but this indeterminacy is due rather to the fact
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that the workhardening rate is not included in the mathematical

formulation of the classical variational principle.

(2) The kinematic assumption in the matrix method is not longer valid
for the sheet-metal forming process. As long as bulk deformation
or in-plane stretching are concerned, this kinematic assumption
that the magnitude of the rate of rotation is negligible compared
to the strain rate does not deviate much from the real situation
and yields solutions consistent with reality. Geometric nonlinear-
ity in sheet-metal forming, however, invalidates such a simplification.

The objective of the present investigation is, therefore, to develop and
establish a finite-element method for sheet-metal forming processes.

In Section II various forms of variational formulations are reviewed
in the light of uniqueness and geometry change which leads to a realization
of the necessity of new formulations. In Section III a new formulation is
obtained and the development of the finite-element model from it is described.
With the particular example of sheet-metal forming processes in mind, the
idealization of plane stress state and membrane theory is implemented.
Furthermore, the development is confined to the case of axisymmetrical
problems.

To establish the validity of the proposed method, three basic sheet-
metal forming processes are analyzed and the solutions are compared with
other available experimental data and numerical solutions. Hydrostatic
bulging is treated in Section IV. Punch stretching with a hemispherical
punch is discussed in Section V. To make the problem tractable, one moving
contact boundary is considered first by neglecting die profile; then the
analysis is extended to include two moving boundaries. In Section VI deep

drawing with a hemispherical punch is solved.




SECTION II

BACKGROUND

1. Uniqueness

We consider the quasistatic deformation of a rigid-plastic solid.
On a portion S of the surface S of this body are prescribed given velocities,
while the remainder ST of the surface S is subjected to given surface trac-
tions Ti. Assuming that these surface velocities and tractions are such
that the entire body is in a state of plastic flow, we want to determine
the stresses oij and strain rates éij throughout the body.

The conventional formulation of variational principle for this problem
is that among all kinematically admissible strain rate fields é;j’ the actual

one minimizes the expression (Hill [8]),
LA f oE* dv - f T.v* dS, (1)
g 11

where 0 is the effective stress, € is the effective strain rate defined by

o=V E-Jc!.o!.,
2 ij 1)
é = //Z /e..é..,
3 1y iy

respectively, where oij is the deviatoric component of Oij' Here a strain
rate field é;j’ defined throughout the body under consideration, is called
kinematically admissible if it is derivable from a velocity field v; which

satisfies the condition of incompressibility v; g " O+ throughout the body

’

o3
‘The comma denotes the differentiation with respect to coordinates, e.g.,




and the boundary conditions on Sv' The variational principle in this form

has been successfully aprn'ied to the analysis of metal forming problems,
such as extrusion [6]. As was found out later, and we will discuss this
shortly, the success is related to the type of boundary conditions prescribed
on the surface of the body undergoing deformation. In general, with the
variational formulation of ™ in Eq. (1), there is a question regarding
uniqueness of deformation mode even though the stress field is uniquely
determined [8], [9].

Consider an incipient flow in a rigid-plastic solid, workhardening or
perfect plastic, governed by the following partial differential equations
which are, of course, dual to the variational formulation m . With respect

I

to Cartesian reference frame Xy the following equations hold:

Equilibrium equations

Oij 3 = 0 in the absence of body force (2a)

Strain rate-velocity relationship

Me

= %{v. C+ v, L) (2b)

Constitutive equation

uoij = éij’ U being an arbitrary constant (2¢)

Yield criterion

0 = /[g;c{jo{j = H(e), where € is the effective strain defined (2d)
by € = f G if di = /2 o

Boundary conditions

"joij = ?i on S, (2e)

where nj is the unit normal vector to the

surface of the body; %i and Qi are prescribed

values
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(1)

Suppose that (oj: >

ég;)) is the solution to this boundary value problem.

Construct a different set of stress fieldsand strain rate fields (og%),’gi)

J

(2) o 2D (D)

ij ij ij ij

from point to point threoughout the body. Then, it is easily shown that this
(2)

set (0. ,égg)) satisfies all the governing equations except for the boundary

ij
conditions on Sv' On SV the velocity integrated from égf) should coincide

)

where O C is any arbitrary factor and may vary

’

with the prescribed value Gi’ Since strain rate-velocity relation is linear,
integrating égf) would yield CQi if ég;) is integrated to give Qi’ and there-
fore C must be unity on S . With this and the compatibility rejuirement the
deformation mode may or may not be uniquely determined. One example of a
well-established unique kinematic mode is in the plane-strain problem. In
the plane-strain condition, unless one family of the characteristics is
straight, the governing equation of the velocity field becomes the telegraphy
equation which is hyperbolic and, therefore, the solution is uniquely deter-
mined if the boundary curve is not along a characteristic.

It can be readily shown that under certain boundary conditions the

set (Oig),cég;)) also satisfies the boundary conditions on S and therefore

the deformation mode is clearly not unique. The following is a partial list

of such boundary conditions.

(1) SV

(2) Oi

0, i.e., all the boundaries are traction boundaries;

0 on SV;
(3) On Sv only the ratio between the velocity components are prescribed,
v,
i
€e.g., . = O
J
(4) Mixed boundary condition; e.g., a ncrmal component of Qi and a tan-
gential component of ?i are prescribed over the surface, or vice

versa. In this case, the additional condition of whether all the

characteristics meet on a curve in the region should be checked [10].




Concrete examples are (1) the expansion of spherical shells [11] or cylindri-
cal shells [12] under internal pressure, and (4) the indentation of a semi-
infinite body by a flat punch under the plane-strain condition [13], torsion
of a prismatic bar [10]. Among sheet-metal forming processes, hydrostatic
bulging belongs to case (2) and punch stretching to case (4) or (3).

Note that the physical meaning of these boundary conditions is that
the plastic flow is unconstrained and all or part of the body is free to
deform. Mathematically, this nonuniqueness is due to the fact that the
Levy-Mises theory, implied in the variational formulation ™ and also
appearing in the differential equations (2c), does not include the
"viscosity effect'" (in Prager's terminology [9]) and, therefore, this
indeterminacy would be resolved if the workhardening effect is taken into
account. In fact, for the workhardening solid there is no inherent indeter-
minacy in general; the apparent nonuniqueness is due simply to an inadequate
formulation of the problem. In proper formulation, traction rate ii must be
specified on ST’ and then from an infinite number of kinematically possible
modes the actual mode can be singled out by the additional requirement that
there must exist an equilibrium distribution of stress rate compatible with
the implied rate of hardening everywhere in the body and with the given

traction rate T; on ST. Besides, the workhardening effect is explicitly

brought into the constitutive equation in the form of

g

]
. ij
Hen o =
1) 5

0 (3)

where 0 is the time rate of G, h the workhardening effect of the material

being equal to %-gg. It can be shown that the constitute equation (3)
de

can always be reduced to the constitutive equation (2c), but not necessarily




vice versa. Therefore, for a perfectly plastic solid, specifying the trac-
tion rate does not resolve the indeterminacy. Hill, then, showed that among
all variational modes compatible with the boundary conditions for Vi on Sv
and the existing stress distribution Gij’ the actual mode minimizes the
following expression when geometry changes are neglected (Hill [8]):

T, = f nEr )% dv - f T.v. ds. (4)

ij g 11
T

Note that the virtual mode é;j in ™ should be normal to the yield surface
at the existing stress point in the stress space due to the compatibility
requirement with existing stress distributions. For statically indeterminate
problems, however, there is a coupling between stress field and strain rate

field and we have to solve these two sets of variables simultaneously.

2. Geometry change

When the effect of geometry change cannot be neglected during deforma-
tion, it is necessary to reconsider the specification of the loading on S,
and the stresses since the changes in shape and area of surface elements
are themselves unknown.

Let Xi be the position vector in a Cartesian reference frame at time t
and after an infinitesimal time 6t, X5 be the position. Let us call the
configuration at time t undeformed configuration and the one at time t + &t
deformed configuration. When an actual force dPi acts upon the area element
da at time t + 8t, there are various ways of reckoning this force.

First, the actual force dPi is referred to the deformed configuration,
or

dP. = n.o. .da, (5a)
1 J 1)

..‘IHIIII.I..IIlI-Il.I.l.‘dliIlﬂl.-ililiilluﬂ-uih-n--uh hoaicd
: e




where nj is the unit normal vector to the surface element of area da in
a deformed configuration. The stress tensor Oij defined in this manner
is called Cauchy stress tensor, or sometimes, true stress tensor.
Second, the actual force dPi is referred to the undeformed configura-

tion, or

dP. = N.S. .dA, (5b)
i~ 757

where Nj is the unit normal vector to the surface element of area dA in

an undeformed configuration. The stress tensor Sij defined in this manner
is called the first kind of Kirchhoff stress tensor, or sometimes, nominal
stress tensor. This tensor has the disadvantage of not being symmetric
and therefore awkward to use in a constitutive equation with a symmetric
strain tensor. Nonetheless, sometimes this stress tensor is used with
nonsymmetric velocity gradients [14].

Third, to obtain a stress tensor, which is symmetric and referred to
the undeformed configuration, we proceed as follows. Instead of the
actual force dPi, consider a force dEi related to the force dPO in the
same way that a material vector dxi is related by the deformation to the

corresponding vector dxi. That is,
= i
dP, = =— dPJ.. (5¢)

Refer this pseudo-force dﬁi to the undeformed configuration to define the
second kind of Kirchhoff stress tensor Ty5°

dP., = N.T..dA. (5d)

Using the expression relating the area change of the same element during

deformation [15],




nda = — N e (6)

where P and p are densities of the volume element before and after the
deformation, the relationship between different stress measures is obtained.

From Eqs. (6), (5a), and (5b),

. _ Oy kK
dPi = njoijda = oij 5 Nk axj dA
(7a)
= N.S..dA
J 1)
or
p. oX.
R e |
%) 59 5% i (7b)
and from Eqs. (6), (5a), (5¢), and (5d),
p, 90X, aX.
0
R . e (7¢)

All these different stress tensors become exactly the same when we
bring the deformed configurations to the undeformed configurations and
make them identical in the limit. Stress rates, however, are not the same.

Let Gui be the increment of displacement of the element; then

) .
T 1j kj 5;; Gui to the. first order,

neglecting plastic volume change. Or, in terms of rates,

%13 * %5 "V (8)

Let us compare the magnitude of the second term with that of the first term

in the right-hand side of Eq. (8). Since




(9a)

i 1
%; 7%, " 7 %fik * 7 %Yk (9b)

Now, if workhardening characteristics are given by the relation

g = H(E), (10a)
then E
|
- |
H'=~d—0 |
de :
e - (10b) i
oo |

€4k = e s
or 4
- _ %%k
o s€ik = — (10d)

a.. '
- - | PR G i
i °ij(1 H'] * 7 Okj%ik (11)
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From Eq. (11) we conclude that if the order of the rate of rotation &ij

is the same as or less than the order of strain rate éij’ and if the work-

hardening rate H' is greater than the stress level, then éij = &ij' Other-

wise, geometry change should not be neglected.
It could be shown [16] that when geometry change is taken into account,

the condition for continuing equilibrium requires that

aS. .

~5§l =0 in the absence of body force.
i

Using this condition, Hill subsequently derived the following variational

formulation [17]:

.

Ly Sl

. 2 1
* o * * o * 12
f h(eij) dv 5 J okjvi,kvj,iv dv fs Tivi ds. (12)
s

Formulation ms follows essentially the same line of formulation m, except

2

that now geometry change is considered. In the formulation m,, as well as

3

in m,, virtual mode must be compatible with the existing stress distribution

and the boundary condition on Sv. As has been discussed earlier for statically
indeterminate problems this is not an appropriate formulation.

Summarizing the development so far, the kinematic mode in sheet-metal
forming of a rigid-plastic solid is not uniquely determined by considering
the first-order expansion of the potential alone. Consideration up to
second-order expansion of the potential, or equivalent consideration of
workhardening rate in a physical sense, needs stress rate terms explicitly
in the variational formulation. When geometry change cannot be neglected,
these stress rate- are related to stress distribution, which is not known

for statically indeterminate problems. The approach of viewing the deformation




as determining the incipient flow by assuming the deformed configuration

coincident with the undeformed configuration clearly does not lead to a
workable variational formulation for sheet-metal forming of a rigid-plastic

solid. In this respect, it is intended to develop an appropriate variational

formulation in the next section.




SECTION III

FINITE-ELEMENT FORMULATION

1. Variational formulation

Let X5 be the position vector in a Cartesian frame of reference at
time t, the moment under consideration. Let Oij be the true stress at
time t and oij + doij the true stress in the same material element after
an infinitesimal time dt, both tensors being associated with the same
Cartesian axes. Let dsij be the increment in nominal stress in the same
element in time dt, based on the dimensions at time t. Let dui be the
increment of displacement of the element, then

a(dui)
ds.., = do,. - O,

ij ij j axk (13)

Requiring continuing equilibrium of stresses, the virtual work principle

gives
B(dui) 3 (du. ] r
[ (o.. +do.. - 0. ]6( J | dv = J (E, + dF.)8(du.) ds,
y LU1J ij Jooax ax; . j J
(14)
where T. = £.0.. and dT. = %.ds.., 2. being the unit normal to the surface
j i“ij j i1y 1

at time t. The variational formulation is obtained from Eq. (14) as follows:

B(dui) a(duj)

1 2 1
8¢ = 6{] 0,.de.. dV + [ = hde,. dv - f =0, . dv
y 1) v A ij v 2 k) axk axi

. J (T, + dT.)du, ds} = 0,
Ve S




j
ax, ox, )
) 1

1 (B(dui) B(du.)]
2

de.. =

ij {15)

and h = % H', with H' the slope of the stress and strain curve. The first
three terms of the functional ¢ represent the energy dissipated during the
time dt up to the second order. If it is assumed that the principal

axes of true strain-rate keep the same directions in the element and the
principal components of strain-rate maintain the constant ratios during

the time dt, the dissipated energy can be expressed directly [18] as
1 2
o dE_ + = hdE
Z(pp 2 p)

per unit volume, where dEp is the logarithmic strain components. The final

form of the functional becomes

1

o = f odE dv + 5[ H'(dfs)2 dv - f (T. + dT.) du. dS, (16)
v j j j

Sg

where dE is defined by

aE = /2] (dEp)z

2. Theory of the finite-element method

An important step in finite-element modeling is obtaining approximate
state equations in a region. The weighted residual method derives the state
equations directly from the governing differential equations. Let us write

the governing differential equation as

Lu - £ =0, (17)

14




where L is the differential operator, f is the known function, and u is

the solution. Withthe trial solution u*, Eq. (17) is not satisfied, but

there remains an error or residual R such that

R = Lu* - f. (18)

This residual is multiplied by weight function w and integrated over the
domain and the state equations are derived from the condition that this

integral vanishes with a given choice of weight function w:

f wR dv = 0. (19)

One well-known method among weighted residual methods is Galerkin's approach.
A more frequently used approach is the derivation from a variational

principle which is a dual expression of the governing differential equation.

Assume that a functional ¢, which is equivalent to the differential equation,

has been established. Let a continuum be divided into a finite collection

M of subdomains called elements interconnected at a finite number of nodes

N. If it is true that the total functional is equal to the sum of the

( y
contributions of each element ¢‘m), then we may write as follows:

o™ (u). (20)

o
N~

m=1

In each element let us approximate the solution with a linear combination

of trial functions vy such that

u = 2 a,v. (21)

holds, where o, are unknown coefficients to be determined later. By

substituting Eq. (21) into Eq. (20), we have
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o m
¢= 1 ¢ (avy)
m=1

M
= mzl qﬁm)(ui) since v, 's are known (22)

9(a;).

The original ¢ of u is now discretized with a function @ of parameters oy
and the initial variatioral problem reduces to determining the o4 that

minimizes @. The minimization of ¢ with respect to o; may be written as
s = éﬂL—Ga =0
¢ = i s (23)

where § denotes the first variation. Since a,'s are independent, expression

(23) is equivalent to a set of simultaneous equations,

22 . ¢. (24)

This is, in fact, the classical Ritz technique. It is the choice of trial
functions that makes the finite-element method different from the Ritz
method and renders it successful; they are piecewise polynomials. Bsides,
the coefficients o called nodal values in the finite-element literature,
do have a definite physical meaning, such as displacement or velocity.

The trial function v, must satisfy certain requirements to enable
convergence as the subdivision into ever smaller elements is attempted.
First, as the element size decreases, the functions in the integral must
tend to be single-valued and well behaved in physical problems. Thisis
called the "completeness' requirement and is satisfied if the trial function

p

is of class ¢ when p is the highest order in the integrand of the

16
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functional. Second, the validity of the summation implied in Eq. (20)

must be preserved. This is called the "compatibility' requirement and is
satisfied if vy is of class Pl [19], [20]. When admissible trial functions
are used, the functional converges monotonically with an increasing number
of elements (or decreasing size) at a rate proportional to h2 where h is

a characteristic element dimension.

3. Modeling of axisymmetric problems

The general outline of the finite-element modeling stated above will
be expanded in detail for the case of axisymmetric thin shells subject to
axisymmetric loading. This particular problem is of interest since some
basic sheet-metal forming processes belong to this category. When the ratio
of thickness to the radius of curvature is sufficiently small, bending
moment and shearing forces may be neglected without serious error and the
membrane theory may be justified [21]. Moreover, the state of stress can
be treated as an approximate plane so long as %E is small compared with
unity, where t is the local thickness and s is the distance in any direction
parallel to the surface. We now may rewrite ® with the substitution of

t dA = dv to Eq. (16):
& a J G(dE)t dA + -;- J H'(dE)%(t dA) - f (T + dT)du; dA (25)

for the unit included angle of the element, where A is the area of the
element and t is the sheet thickness.

From the symmetry of the problem it is easily shown that the circum-
ferential direction and the meridian direction are the principal directions
and if the friction between the shell and the external agent is negligible,

the thickness direction will be the third principal direction. Within the

17




order of approximation taken in the formulation, the logarithmic strain incre-

ment may be used as the strain increment measure. Then the definitions of

strain increments are

» In —
dE dE S
dE = b { ™= o (26)
dE, dE, in X

if, during an incremental deformation, an element of undeformed length Sy
is stretched to the length s and the point currently at the radial distance
r, moves to the deformed radial location r. Subscripts r, 6 refer to the
meridian and the circumferential direction, respectively.

To bring the model closer to reality in the present investigation,
normal anisotropy is included and the corresponding stress-strain increment
relation is obtained, using Hill's criterion [13], as

ok - 48 - dE
(1 + R)or - ROe (1 + R)c6 - Ror (1 + R)G

> (27)

where R is the planar isotropy parameter which is the ratio of width strain
to the thickness strain in uniaxial tension. The effective stress and the

effective strain are defined+ as

= 2 2R 2
5= /g - THR %% * % e
af w L »[dE‘:" v R dBgdE + dEg. (28b)
V1 + 2R
+Note that H' = 2: must be consistent with these definitions.
dE
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The effective strain, dE, may be written in matrix form as

db = /% [de"D aE)Y/2, (29a)
where
|
i+ (2R R
O~ 20 + 27) : e
R l1 +R

The sheet geometry is approximated by a series of conical frustra, as
shown in Fig. 1. Linear trial functions, or shape functions, as they are
often called in the finite-element literature, are enough since the inte-
grand in the functional is of class Cl. The unknown coefficients, or nodal
values, are taken to be the incremental displacement at nodes. Then we may

write

(m) v T
(dvl,dwl,dfz,dwz)
(30)
(du,,du,,du,,du )T
L2203 4

for a representative element m, where dvi, dwi are the radial and the axial
components of incremental displacement of the i-th node. Then the incre-

mental displacement field inside the element may be written as

I+ g Bis 40 L

7 9 ) g
dg dw1

u = - ] (31)
dw 1+ t! 1 - tr|]9v2
0 0
2 2 e
2
=Eu(m)’

where t' is the local coordinate varying from the value of -1 at node 2

19




dwl

(t* = +1)

|

l (:'.0)2
L (ry) l

1

Figure 1. Approximation of the Sheet Geometry
into a Series of Conical Frustra

to +1 at node 1. (See Fig. 1.) Due to this incremental displacement field,

an element of length o>

sp = Alrg), - )2 + Lz, - (29},

is stretched to a new length s,

(7]
|

= /f(ro)l = (ro)2 + dv1 = dv2}27+ {(zo)2 = (zo)1 + dw2 = dwl}z
(32)

J(rl - rz)2 + (z2 - Zlif,

where (ro)i, (zo)i are the radial and the vertical positions of the i-th
node at the undeformed configuration and (r)i, (z)i at the deformed
configuration. Since the element is straight, any point of t' in the local

coordinate is shown to have a global radial position T determined by

1+t 1 - t!

The new position r of the same particle is given by
b, 1 +t" (1 -1t")
T =71+ 5 dv1 ey Ty dvz.
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We are now at the position of calculating the strain increment field.
Recall the equation (25) and substitute Eqs. (32), (23), and (34) into it

to obtain

2 2
ot {(ro)1 = (ro)z + dv, - dv2} + {(zo)1 - (), + dw, - dwll 5
2 S2
90 - 1+ t) L
R R S e
In
To

(35)

(m)

We may write ¢~ °, a contribution from the m-th element to the total

functional ¢, in terms of nodal values, for unit angle included:
¢(m) = [ {odE + %-H'(dE)z t dA - [ (Ti + dTi)vi dA

- f a(/(g ¢)[aED a1/ 2 aa + 1 f H' (% t) [dE'D dE] dA - j ™

+ -2— Nu
(36)
where
rTl + dTl
T. + dT
T = 4 2 2
T3 + de
LT4 + d’I‘4
Minimization gives a set of simultaneous equations:
(m) 3(dE)T (ae)T
L M (//z t)o dETD dE]'l/2 ——— D dE dA + (Z-t)H' - ~ d
(m) 3 ~ ="~ (m) = "~ 3 D dE dA
% 9y gu™ = 7
(37)
[T e
From Eq. (35),
21
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B(dEl) a(dEZ) rl T rz 1 + ¢t
au1 au1 s2 2r
a(dEI) a(dEz) -(22 - zl) g
 (dE) 4 My s2
= (m) = g = = (38)
82 a(dEI) a(dEZ) —(r1 - rz) T
3u3 Bu3 s2 2r
B(dEl) a(dEz) (z2 - zl)
du du 2 0
4 4 3

Therefore, Eq. (37) becomes

(m)

m)

3¢
ag(

SRR, SO -1/2 2 T y
- I (3 t)5[3 dE'D dE]™/“QD dE dA + f (5 t)H'QD dE dA - J N'T dA = 0.

(39)

These equations, being valid for an m-th element, are now to be combined
under the condition of compatibility that the first-order derivative of
nodal value may be discontinuous across element boundaries but the nodal

value itself must be continuous,

3w g

du BE'(m) = (40)

~

4. Linearization

Eqs. (39) and (40) are nonlinear equations and it is very difficult
to solve them without linearizing. One way is to take an initial guess of
the solution to the equation as u* and rewrite Eq. (39) in terms of the
differences between this initial guess and the correct solution Au, where
= u* + Au, and expand it. Where the initial guess is sufficiently

u
correct

close to the correct solution, we may neglect higher-order terms of Au and
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thereby linearize successfully. This can be done mathematically in a

systematic way and is called the Newton-Raphson method [22]. Say we have
a nonlinear equation Y(u) = 0, then we may expand into a series with respect

to the correct solution u, such that

0
dy 1(a% 2
b(u) = y(uy) + [anu=u (u-uy + 5{;;§Ju=u B~ up)" # -
0 0
e dy) * 1 dzw] 2 g
= P> + [—(E] Au+§(d—u-ij(Au) Fwee o= 0

If u and u, are sufficiently close, we may neglect the higher-order terms

and write
dy|* -
= p* - - 41
Y o= P* o+ [du) Au = 0. (41)
ﬁém)
In our formulations the equations to be minimized are - & = 0, and,
Jdu

~

therefore, the expressions corresponding to Eq. (41) are

W, i "(du) = l ag(™ |+ (42)
augm)augm) aui
i J
It may be shown that
5 T "bh T
3 =p(m)=%J—l—{[5+H' dE)(K'%PbT]+%Hb?2}tdA
MOMOC dE o e
(43a)
where
b = QD dE
K = Q'

23




and that

3E(m) (m)

(
- . (43b)
Bugm)

where

p(m =-§ f-l- (G + H'dE)bt dA,
dE

™ - f N'T dA.
By assembling the equations obtained for an element, we finally have
P*Au = F - H* (44)

We evaluate the integrals with the Gaussian quadrature formulation.

We have yet to introduce the boundary conditions for solving a physical
problem. For an incremental displacement prescribed boundary, the corres-
ponding perturbations should vanish and, for a traction prescribed boundary,
the prescribed traction value will enter into the F vector. The solution
procedure is as follows:

(1) Assume an initial guess u;s and compute P, H, F corresponding

to this guess.

(2) Solve Eq. (3.31) and obtain Au.

(3) Obtain a new initial guess uy = up ¢ Au.

Repeat this process until convergence is achieved. Convergence is checked
by the fractional norm. A norm is defined by a square root value, i.e.,

full = VUf sud e e

2

and
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The fractional norm is the ratio !%5} and when, for subsequent iterations,

this value reaches the magnitude smaller than a predetermined value, say,

10-6, the iteration stops and the solution is thus obtained.
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SECTION IV {

HYDROSTATIC BULGING

1. Introduction

The ductility of sheet metal under biaxial stress is often examined

by means of the so-called bulge test. A uniform plane sheet is placed over
a die with an aperture and is firmly clamped around the perimeter. An in-
creasing hydrostatic pressure is applied to one side of the sheet, causing
it to bulge through the aperture. From the measured profile and thickness
of the plastically deformed sheet near the pole, it is possible to calculate
the local state of stress in terms of the applied pressure. If, in addition,
the state of strain is measured by means of a grid, the stress-strain char-

acteristics of the metal under biaxial tension are obtained. The advantage

of this test over any other simple one is that a greater range of pre-
instability strain can be obtained.

Hydrostatic bulging is not only important as a material property test,
but also as a forming operation. Thus, a number of theoretical investiga-

tions, dealing with axisymmetric hydrostatic bulging (Fig. 2) has appeared

in the literature.

The classical analysis of bulging is the one by Hill [23]. His solu-
tions are, however, special ones. Instead of analyzing deformation with
a given stress-strain characteristic, Hill first adopted special kinematic
assumptions and from them deducted the necessary stress-strain character-
istics which satisfy all the governing equations under the prescribed
kinematic mode. The kinematic assumptions are first, that any material

element describes a circular path which is, moreover, orthogonal to the
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Figure 2 Schematic view of hydrostatic bulging.

momentary profile, and second, that circumferential strain is numerically
equal to the tangential strain. The required stress-strain characteristic
is found to be an exponential type. Hill's other solution on a linear
workhardening solid uses the method of successive approximation by adopting
a yield criterion which is neither von Mises nor Tresca, for the purpose
of mathematical simplicity.

Analyses of work by Woo [24], Yamada [25], and Wang [26] are based
upon the realistic choices of stress-strain characteristics and the yield
criterion. In applying the deformation theory of rigid plasticity, Wang
experiences a mathematical difficulty and attributes this to the fact that
the differential equations associated with the deformation theory possesses
a singularity which has the effect of restricting the range of calculation
within a certain value of the polar strain. Besides, the agreement of
deformation theory predictions with the experiment is rather poorer than
the incremental theory prediction [27].

In applying the incremental theory of rigid plasticity, researchers
experience a difficulty in satisfying the boundary condition at the fixed
edge, i.e., ée = 0. To avoid this difficulty, Woo uses the deformation
theory, while Yamada reasons that introducing an elastic strain component
into the formulation will resolve this ''mathematical difficulty" (in
Yamada's terms) and turns to the elasto-plastic constitutive law. Another
theoretical work of interest comes from Wang, using the parametric repre-

sentation of the stresses.
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The only published solution on hydrostatic bulging using the finite-

s

element method is the one by Iseki et al. [28], with the incremental theory

of elasto-plasticity. ;

2. Computational procedures

In adopting the finite-element model to hydrostatic bulging, it is k

necessary to reconsider the external work increment term, since the pressure

is uniform over the entire surface of a closed shell. In this case the

increment of external work may be written as [29], [30],
Aw = pVV, (45)

where VV is the increase of the volume enclosed by the deformed sheet and p
is the pressure acting on the deformed configuration.

As an initial condition, Hill's special solution is utilized. 1In
other words, the initial profile of the bulge is assumed to be a part of
a sphere whose radius is given by r = % (%; + h), where a 1is the radius
of the original blank and h is the polar height at the moment. With this
geometry, a pressure p is prescribed. This pressure should be greater,
at least, than the pressure which makes the sheet having initial geometry
everywhere plastic. The initial guess on the incremental displacement
is also obtained from Hill's special solution by assuming normal trajectory
of the element particle to the bulge profile. The program for computing
the initial guess is given in Appendix A.

When a converged solution is obtained for the given pressure, a new
bulge profile is determined from the initial bulge profile and incremental
displacement grid. Then the pressure is assigned a higher value and the
converged solution for the previous step is used as the initial guess for

the incremental displacement field and the computation continues in this

way. The program for the analysis of hydraulic bulge is given in Appendix B.
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3. Results and discussion

To examine the validity of the present FEM for hydrostatic bulging,
the solution is compared with those achieved by the elasto-plastic FEM
and the experiment.

The following conditions were employed for the comparison with the

elasto-plastic FEM:

Workhardening characteristics: o = 105(.0019 + E)O°2 x logkg/m2

1.036(.0019 + £)°:% x 10°N/m?
Thickness: 3.0 x 10 'm (= 0.3 mm)
Radius of the sheet: 2.4 x 10 °m (= 24 mm)

Anisotropy parameter: 1.0

An identical problem was also solved by Yamada [25], using the finite-
difference method with the elastic-plastic theory. Fig. 3 shows the rela-
tionship between hydrostatic pressure and the polar thickness strain. The
solid line represents the elasto-plastic FEM (and also the finite-difference
method) and the points indicate the solution given by the rigid-plastic FEM.
The deviation of the first point by the rigid-plastic FEM is thought to
reflect the approximation involved in the initial condition that the sheet
is everywhere plastic and that the initial geometry is a part of a sphere.
The solution can be improved numerically by taking a smaller value of h

in generating the initial condition. Nevertheless, the solutions after
this first step are in extremely good agreement with the elasto-plastic FEM
and any disturbance in the initial conditions does not matter after an
initial deformation of a small magnitude. The pressure increment is raised

by twice after some deformation and it is to be noted that the solutions
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with the larger pressure increment size are still accurate. This means
that the method is computationally economical with a reasonable accuracy.
After the last point in the diagram the solution diverges and it is thought
that the pressure maximum has been reached. The convergence is excellent;
in every step, five to seven iterations seem to be sufficient. Fig. 4(a),
(b) show the comparisons of strain distributions. The circumferential strain
distributions are in good agreement. The tangential strain distribution by
the rigid-plastic FEM deviates somewhat at the edge from that by the elasto-
plastic FEM. The tangential strain is more sensitive to the method employed
than the circumferential strain, but this deviation of tangential strain is
not serious because the solution closely follows that by the finite-
difference method and we may conclude that the strain distribution is
accurately predicted. Fig. 5 shows the distributions of stresses when the
polar thickness strain is (-0.4). Fig. 6 shows the bulge profile at some
stages of deformation. A number of material elements are traced during
derormation and are shown on each bulge profile.

Next, the solution is compared with Mellor's [31] experiment on half-

hard aluminum.

Workhardening characteristics: o = 15,460(1 + 0.76€) psi

1.066(1 + 0.76g) X 108N/m2

Radius of the sheet: 5.0 inches = 1.27 m
Thickness: .035 inch = 8.89 x 10-4m

Anisotropy parameter: 1.0

One thing to be mentioned is that in the actual experiment, the die has

a round profile of radius % in., but in the analysis this profile has been
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neglected. Fig. 7 shows that the agreement of the relation between pressure

and polar height is good. The agreement in the bulge profile is also excel-
lent, as in Fig. 8. As shown in Fig. 9(a), (b), the theoretical circum-
ferential strain still closely predicts the experimental one, but there
is some discrepancy in thickness strain distribution. As has been mentioned,
the actual die has a round profile which has been neglected in the analysis,
and it is thought that the thickness strain is more sensitive to the profile
than is the circumferential strain. Initially, there is virtually no dis-
crepancy, but increases at later stages. This may be explained by the fact
that initially the sheet is not in contact with the profile, but as deforma-
tion continues, more of the sheet is brought into contact with the profile
and makes the actual situation different from the one used in the analysis.
In general, the theoretical prediction by the rigid-plastic FEM is

in good agreement with both the experiments and the analyses by the elasto-

plastic FEM and the finite-difference method.
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SECTION V

STRETCHING OF A SHEET WITH HEMISPHERICAL PUNCH

1. Introduction

Punch stretching is commonly used to assess the pressing quality of
sheet metals. A circular sheet is clamped firmly along the periphery and
is stretched by a rigid punch of hemispherical shape. The depth of the
deformed sheet when it fractures is usually taken as a measure of ductility.
See the schematic diagram in Fig. 10.

An experimental investigation of punch stretching as a forming problem
dates back to Loxely and Freeman [32], who demonstrated that the interfacial
friction between the punch and the sheet has a significant effect on the
strain distribution in the sheet and, consequently, on the location of
fracture and dome height when the sheet fractures. Keeler and Backofen [33],
in characterizing the limit stretching, followed the strain history of each
element with the progress of deformation and observed the occurrence of
discontinuity in tangential strain at a certain element, which was subse-
quently interpreted as the onset of diffuse necking [34]. Based upon Hill's
analysis [35], they believed that localized necking is not possible in punch
stretching, but that only diffuse necking takes place, increasing the over-
all nonuniformity of straining.

The observation of localized necking in situations where Hill's
analysis denies one has been well established in the case of in-plane
stretching and has prompted the development of Marciniak and Kuczynski's
theory [36], [37]. In punch stretching, Gosh and Hecker [38] observed

localized necking and reported that local necking sets in even though
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Figure 10. Schematic View of the Stretching
of a Sheet with a Hemispherical

Head Punch
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the plane-strain condition, which is thought to be responsible for local
necking in in-plane stretching, is not achieved. This is attributed to the
fact that in punch stretching an increment in tangential strain is geometri-
cally tied to an increment in circumferential strain and, therefore, the
approach to plane-strain condition becomes slower. Another experimental
investigation of punch stretching is the one by Alexander and Kaftanoglu
[39]. They observed that the deformation is limited by the 'strain
propagation instability" or, local necking in common terminology, and not

by "maximum load instability" or, diffuse necking.

From the viewpoint of the deformation analysis, punch stretching is a
complicated problem because a moving boundary separates the region in contact
with the punch head from the unsupported one. The friction over the punch
head gives rise to additional complications. One special solution is by
Chakrabarty [40]. Following the line of Hill's special solution on hydro-
static bulging he obtained an analytical solution for a special material
having exponential type stress-strain characteristics. For more general
materials the only solutions available are the numerical ones. Numerical
solutions of importance are those by Woo [41] and by Wang [42], [43].

Woo's and Wang's solutions were obtained by the finite-difference
method. The only solution by the finite-element method on punch stretching
is one by Wifi [44]. His elasto-plastic, finite-element model does not
neglect the bending moment nor the effect of shear stress and uses two-
dimensional triangular elements to take the thickness variation into
account. Friction, which is of primary significance compared with the
secondary effect of bending and thickness, is assumed to be perfect, meaning
that once the element touches the punch head, it does not slide over the
punch but sticks to it.
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2. Computational procedures

In applying the finite-element method to punch stretching, a thought
should be given to the implementation of boundary conditions. The boundary
conditions in punch stretching are stated not only by prescribing tractions
and incremental displacements but sometimes by their ratios. In this
report, the problem is similar to the ball indentation problem (Lee et al.
[451).

The radial and vertical positions of the material elements in the
contact region are not independent but they are related to each other
through a mathematical expression for the geometrical requirement that they

must be actually on the surface of the punch head. The expression is

(ro + v)2 + (c + 2y + w)2 = ri, (46)

where Tos Zg are radial and vertical positions of the element at the present
undeformed configuration; v, w are the increments of horizontal and vertical
displacements, and ¢ is a parameter related to the punch height h by the

expression

See Fig. 11. Recall that the finite-element formulation in Chapter IV has
already been linearized and what it really solves for are the perturbation

terms. Therefore, we also linearize the boundary condition (46) to obtain
2(r, + V¥)AV + 2(c + z, + w*)Aw = r2 - (r, + v*)2 - (6% 2. * w*)2 (47)
0 0 P 0 0 X

where starred (*) quantities are initial guesses, and Av, Aw are perturba-

tions. By rearranging (47), we have
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Figure 11. Geometrical Requirement for the
Node on the Contact Region
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Av =

where
{x, + v¥)
0 1

a=tc+ 2y * w*) ~ tan 6 B

and
r2 - (¢ + 29 * w*)2 - (ro + v*)2
g = P : (48¢)
2(rO + v¥)

When the finite-element model is implemented, all the tractions are trans-

formed into generalized nodal forces. Therefore, it is convenient to write

the boundary condition in terms of the generalized nodal forces ﬂ(r) and m

the horizontal and vertical components, respectively. See Fig. 11.

Now
ﬂ(r) = Ncos © - S sin 6
(49)
T = Nsin 6 + S cos 6
(2)

where N and S are generalized forces normal and tangential to the punch

head. We eliminate N through the relation
c0526 + sin26 = 1
and obtain
m, cos g = L sin 6 + Kk, (50)

where k is the frictional force at nodes. However, from geometry we know

that the following holds:

43

Cz)”




r, + v*
0
cos 6 = TS (51a)
P
Z. + W*¥ + ¢
S48 = e (51)
T
P

So, (50) may be written as

"(r) krp
®za ' Ta T T, * V9 (52)

If the die has a round profile of the radius r,, then the requirement

D,

for a material element to lie geometrically on the profile is similar to
the requirement to be satisfied on the punch head. Therefore, we have

(similar to Eq. (46)),

2 2

(a - rO - v)2 + (rD - 24 - w) = Ty (550

where a is the radius of the sheet. Linearization of Eq. (53) gives

2(a - Ty - v¥)Av + Z(rD -2 - w¥)Aw = -rg + (a - Ty - v*)2 + (rD -2y - w*)
(54)
or, rewriting,
By %;'* 2, (55a)

¥ = - (55b)

and

,.,
o8]
]
&
o
1
<
*
—
(3]
+
~
g
o
1
™
1
=
[l V]

3 a okl (55¢)
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The tractional boundary condition over the die profile can be written

similarly as

; "(r) 4 kYD

T(z) Y e R, - V)

(56)

For the portion of the sheet which is not in contact with the punch
head nor with the die profile, the displacement increment in the radial
direction and the displacement increment in the axial direction are not
bound to each other, as is the case for the contact region, but remains
as independent variables. Tractions are, however, given the value of zero.

With the advancement of the punch head, the portion of the sheet in
contact with the punch or die profile increases and, consequently, the
boundary separating this '"contact region'" from the 'unsupported region"
changes. The presence of this moving boundary is always a source of compli-
cations in the numerical analysis of punch stretching because it requires a
basically trial-and-error approach. The treatment of the moving boundary
used in the present analysis for punch stretching without round die corners
is explained in detail as follows:

First, assume the position of the boundary in future configurations.

In the FEM this means assuming which nodes will be in contact with

the punch head in the future configuration. Then, obtain a converged

solution based upon this assumption and check to see if it is true.

Since the position of the boundary is already known in the current

configuration, in practice we assume and check how much this boundary

advances.

(1) Check whether the boundary is assumed to advance too fast.

Compute the normal component of the generalized nodal force
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(2)

to the punch head for the nodes in contact with the punch head.
If every generalized normal force is directed outward from the
punch head, then all the nodes which are assumed to be in contact

with the punch head actually do so. On the other hand, the gener-

alized normal force in the direction toward the punch head for
any node means that external force other than the one exerted
by the punch is necessary for this particular node to conform
with the punch geometry. Since there is physically no source
of applied force other than the punch, the assumption that this
particular node is in contact with the punch head is not correct
and the position of the boundary should be re-assumed to exclude
this node from the contact region.

Check whether the boundary is assumed to advance too slowly.
Compute the distance between the nodes in the unsupported region
and the center of the hemisphere of the punch head. If this
distance is shorter than the radius of the punch head for any
node, it means that this particular node is inside the punch
head. Since this is physically impossible, the assumption that
this particular node is not in contact with the punch head is
not correct and the position of the boundary should be re-

assumed to include this particular node.

Although this basically trial-and-error approach seems to be very
time consuming, in actual computation we can predict the movement of the
boundary fairly accurately based upon the distance between the free nodes
and the punch surface. Furthermore, since we already know the position of

the boundary in the current configuration, it is enough to check the
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boundary assumption for only a few nodes neighboring the previous position
of the boundary, not for whole nodes.

The procedure described above for the contact region on a punch head
is also applicable for the contact region at the die corner. Handling two
moving boundaries simultaneously really does not invoke any new theoretical
difficulties but only takes more computation time and may be impractical
for inefficient numerical methods.

In order to implement Coulomb friction between sheet and punch or die,
we first prescribe a tangential friction force S and obtain a converged
solution and then compute generalized nodal forces. From Eqs. (49) we then
are able to compute the normal component N and the friction coefficient
W= % corresponding to the initially prescribed value of S. If the com-
puted friction coefficient is not what is intended, then we modify the
S value and repeat the process. It should be noted here that the correction
of frictional force S needs the necessary modification only in the F matrix
(Eq. (44)), while the stiffness matrix P, which is the most time-consuming
part, remains the same.

The deformation step is controlled by the punch head increment, which
is designed in the present codes to yield the maximum increment of effec-
tive strain roughly equal to a preset value. In the present work the
optimum size is shown to be a 0.04 increment of effective strain. The
solution generally converged after 10 ~ 15 iterations for a single step

within the fractional norm of 10_6. The actual program is shown in Appendix C.

3. Results and discussion

The present rigid-plastic FEM is compared with the finite-difference
methods by Wang [43] and Woo [41], and also with the experiment by

Kaftanoglu and Alexander [39].
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(1) Comparison with the finite-difference solution by Wang

The parameters used in Wang's example are as follows:

Material: copper

Stress-strain characteristics: o = 30.560’326 ton/in.2
= 4.6368" 20 o 108N/m2
Anisotropy: R = 1.0
Friction: u = 0.04
Thickness: t = 0.035 in. = 8.89 x 10 % m

Punch radius: rp = 1.0 in. = 2.54 x 10_2 m

Radius of sheet: & = 1.15 in. = 2.8%1 x 10°% u

Initial radius is sometimes denoted by -

The two methods are in excellent agreement in predicting the punch
head for a given punch travel. See Fig. 12; the solid line represents
Wang's solution and the points represent the rigid-plastic FEM. Fig. 13
shows the thickness strain distribution. Again, a good agreement between
the two solutions is apparent.

The second example has the following parameters:

. .. 0.2
Stress-strain characteristics: o = ke

Anisotropy: R = 1.0
Friction: u = 0.2
Punch radius: r_= 1.0

P

Radius of sheet: r0 = 1.0

In Wang's work all the results are reported in the dimensionless number.
Figs. 14 and 15 show the circumferential strain distribution and thickness

strain distribution, respectively. The solid line represents Wang and points
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Figure 12. Punch Head vs. Punch Travel
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represent the rigid-plastic FEM. Excellent agreement of the two solutions
is demonstrated.

The step size has an important effect upon the accuracy and efficiency
of the solution. The smaller the step size, the better the accuracy, al-
though more computation time is required. Fig. 16 demonstrates that there
is a limit to increasing efficiency while maintaining accuracy. For example,
solutions with a step size of 0.08 in the effective strain increment deviates
considerably from the solutions obtained with step sizes of .02 or .04. 1In
the remainder of the work the step size of .04 is most often used.

Compared with this significant effect of step size, the mesh size does
not exert a great influence upon the solution, as is demonstrated in Fig. 17.
The solution with a coarse mesh (10 elements) is essentially the same as
the one with a finer mesh (40 elements), even though the latter will b-°
helpful in pinpointing the exact location of peak strain.

In the examples above, there is only one moving boundary, that between
punch and sheet, since the presence of the round die profile is neglected.

In practice, the die always has a round profile and as the radius of the
profile gets larger, it becomes necessary to include the die profile in
the analysis. In this case there are two moving boundaries, the second
being the one between sheet and die. The only work reported which includes

the die profile into the analysis is the one by Woo.

(2) Comparison with the finite-difference solution by Woo

The parameters in Woo's example are:

Stress-strain characteristics: o = 5.4 + 27.850'504 ton/in.2
for € < 0.36: = (0.08208 + 0.422569¢%-°%%) x 10°N/m?
= 5.4 + 24.4¢%°37% ton/in.?
for € > 0.36: = (0.08208 + 0.37089 **37%) x 10%/m®
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Material: copper

Punch radius: 1 in. = 2.54 x 10'2 m

Die profile radius: 0.3 in. = 7.62 x 10°° n

Radius of sheet: 1.3 in. = 3.302 x 1072
Coefficient of friction: 0.04

Thickness of sheet: 0.035 in. = 8.89 x 10_4 m

Figs. 18 and 19 are the thickness strain distribution and the circumferential
strain distribution. Solutions by Woo are represented by solid lines and
the solutions by the rigid-plastic FEM are represented by points. Agree-
ment between the two solutions is excellent for most of the deformation.
However, at later stages of deformation, a discrepancy is observed around
the edges. Re-examining Woo's computational procedure reveals that in i
order to avoid the difficulty of satisfying boundary conditions exactly
along the fixed edge (ee = 0), he allowed a small increment of circumfer-
ential strain along the edge at each stage. In the present rigid-plastic
FEM such difficulty does not exist, so there is no need to relax the
boundary condition. The discrepancy observed at later stages of deformation
may be attributed to this difference.

With regard to the instability, Woo stated that it occurs when the
resultant tangential stress determined from the strain hardening character-
istics cannot obtain the value required for the equilibrium and at that
instant he stopped the computation. In the present rigid-plastic analysis
such an instability is not observed at the point reported by Woo, and the

computation continues.

(3) Comparison with the experiment by Kaftanoglu and Alexander

The parameters of Kaftanoglu and Alexander's experiment on soft copper

are:
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Stress-strain characteristics: O &.3789 psi

68,394(0.0122 + €)
0.3789

4.7156 (0.0122 + ¢) x 105N/m?

Thickness: 0.048 in. = 1.219 x 10™°

Friction condition: PTFE film lubricant

Radius of the sheet: 0.717 in. = 1.821 x 10™> m

Punch radius: 0.65 in. = 1.651 x 10™° m

Kaftanoglu reports that the friction condition changes with deformation
and measures three different friction coefficients: u = 0.2 at stage 1,
u = 0.135 at stage 2, and u = 0.07 at stage 3. To include the changing
friction coefficient into the analysis, we need more information on the
friction history, which is difficult to obtain experimentally. Therefore,
as a representative value, we use the mean of three values of the friction
coefficient, yu = 0.135, for our computation. Figs. 20 and 21 show the
distribution of the circumferential strain and the thickness strain. The
agreement between the experimental data and the numerical solution is a

reasonable one considering the fact that the exact friction condition is

not known.

(4) Influence of formulation of constitutive relation

Various formulations have been given for plastic stress-strain rela-
tionships of workhardening materials. Among them, the parabolic hardening
law has been used extensively for sheet metals because of the ease with
which it characterizes workhardening properties of materials. However, it
was suggested recently [46] that the Voce equation [47] is a better repre-
sentation of materials behavior when solving plasticity problems involving

workhardening rate. The forming limit curves were compared using the
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parabolic hardening law and the Voce equation [48], and the result indicates
an importance of the choice of workhardening representation of materials.
Because the term containing the rate of workhardening appears in the
finite-element formulation of sheet-metal forming, it is of importance to
examine the influence of workhardening representation on the mechanics
computed by the finite-element method. The material is aluminum alloy
2036-T4. The parameters are as follows:

86,000(6)0'222 psi for the parabolic

hardening law

Stress-strain characteristics: o

Q
n

65,000{1 - (1 - 0.508)exp(-8.5le)} psi

for the Voce equation i

Fig. 22 shows the two stress-strain curves together with tension test data

from the specimens cut in the three directions (0°, 45°, 90°).+

f(l) The stress and strain values in tension tests in the three directions
were converted to values of the effective stress and effective strain
according to

(a) Tension in the 0° (rolling) direction:

Tr * ET Ty, & L + T,T
(-j:/%/ 90 ~ 70790 g:=‘/2‘/o 90 ~ 0790 _

To * Tgp * Tofgg O 3 Too * TpT90 -

(b) Tension in the 45° direction:

s . /3 /(ro + Tgp) (1 + 1,0) - 2 /2(r0 * Tgy * ToTyo)
2V 2r. * ron + .t Va5’ bl A T TP
0o * Too 0ot Too as

0%90 e

(c) Tension in the 90° direction:

O s
90 * ToFeg %0 3 Ty * ToTgo

(Footnote continued on next page)
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r-value: T = 0.66, Tyo = 0.69, Tgg = 0.70, and ¥, = 0.685

Radius of die opening: (0.80 in.)

Blank thickness:

Radius of punch head: 0.75 in. and 0.45 in.

Coefficient of friction: 0 and 0.2
Punch stretching was performed on a horizontal hydraulic press. Tests were
interrupted for strain measurements (thickness and circumferential strains)
from the grids photoprinted on the specimen. Load-displacement relationships
were also recorded. First, the experimental strain distributions were com-
pared with computed results, using the parabolic hardening law in Fig. 23.
In the experiment Johnson's wax was used as the lubricant and was applied
at each stage. In comparison, two discrepancies are apparent: (i) the co-
efficient of friction does not stay constant; particularly, at the last stage,
the experimental strain distributions indicate that the coefficient of fric-
tion is less than 0.2, which, however, gives good agreement for other stages,
and (ii) the measured thickness and circumferential strains for a given
punch depth do not follow the corresponding theoretical curves. This is
attributed to the fact that the accurate strain measurements is extremely
difficult for critical comparison between theory and experiment. The load

values summarized in Table 1 show an excellent agreement between the two.

where r are the r-values obtained from the tension of speci-

0’ Tas* Too
mens cut in the 0°, 45°, and 90° directions, respectively.

(2) The effective stress and effective strain defined in the formulation of
this report differ from the definition above by a factor such as

/ 1R - /, 2+ r
- 5 a - 2 a
g = S —— N € = — st—— :

2 2+ X S1TE Ts
To * 2045 * Too
where % is the average r-value defined by R 7]
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Table 1
PUNCH LOAD AND DISPLACEMENT RELATIONS

Punch head radius = 19.05 mm (0.75 in.)

Theoretical Experimental
Displacement Punch load Punch load Displacement
mm in.) N (1b) (1b) N
.06 (0.160) 6,330 (1,423) (970) 4,315 2.79 {0.110)

.10 (0.240) 10,889 (2,448) | (1,730) 7,695  4.83 (0.190)
.54 (0.297) 14,483 (3,256) | (2,990) 13,300  7.11 (0.280)
.80 (0.386) 22,059 (4,959) | (4,940) 21,974 10.08 (0.397)
.45 (0.490) 30,301 (6,812) | (6,580) 29,269 12.45 (0.490)

[TV RN BN N S8

Punch head radius = 11.43 mm (0.45 in.)

.06 (0.160) 5,124 (1,152) (920) 4,092  2.72 (0.107)
.10 (0.240) 8,131 (1,828) | (2,000) 8,896  6.30 (0.248)
.53 (0.336) 12,237 (2,751) | (2,770) 12,322  8.18 (0.322)
.58 (0.377) 13,962 (3,139) | (3,130) 13,923  9.68 (0.381)

© oo O H
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Figure 23. Experimental (Johnson's wax as lubricant)
and Theoretical (p = 0.2) Strain Distribu-
tions for Punch Size (rp/r0 = 0.75/0.80).

(a) Thickness Strains; (b) Circumferential
Strains
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For a smaller punch size, the strain distributions are compared in Fig. 24.
The same observations as those in Fig. 23 apply. Again, the punch load is
in good agreement.

The influence of workhardening representations on the detailed mechanics
is examined in Figs. 25, 26, 27, and 28. Referring to Fig. 25, the general
trend of strain distributions is not altered by the workhardening representa-
tion. However, the magnitude of strains, particularly, peak strains, differ.
With the Voce equation, the peak strains are larger than those computed by
the parabolic workhardening law. This difference becomes larger as the
punch penetrates.

It appears that the difference of the two is more significant for
higher friction in the larger punch size. However, in the smaller punch
size, the difference of the two strain distributions is about the same for
the two coefficients of friction, 0 and 0.2, as shown in Fig. 26.

It is rather surprising to find in Figs. 27 and 28 that the punch load
for the same punch displacement is higher with the parabolic workhardening
law than that with the Voce equation. The difference becomes significant
for large punch penetration. From these results, it is concluded that the
representation of the workhardening characteristics of the material does
have an influence on the computed strain distributions and load-displacement
relationships. The difference becomes critical for large punch displacement
in predicting both peak strains and the punch load. In order to determine
which representation is preferable, however, more experiments with improved

accuracy and control are needed.
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SECTION VI

DEEP DRAWING OF A SHEET WITH HEMISPHERICAL PUNCH

1. Introduction

In a deep drawing test a circular sheet of metal is placed between
the blank holder and the die and then fully drawn into the shape of a cup.
The formability is then measured by the maximum size of the blank which can
be drawn without a failure, or, more often, by its ratio to the punch diameter.
This ratio is called the limiting drawing ratio and this particular kind of
test is called the Swift test.

Deep drawing is not only a useful method of material testing, but also é

one of the basic operations in sheet-metal stamping. In practice, various

shapes are possible for the bottom of the punch; however, most past investi-
gations are on deep drawing with a flat-bottomed punch [49]-[56].

Among the earlier works on deep drawing are those by Hill [13] and by
Chung and Swift [52] using the incremental theory of plasticity. More
refined analyses are the finite-difference solutions by Chiang and Kobayashi
[57], b~ Wang and Budiansky [51], and by Chakrabarty and Mellor ([49]. Even
though such a refinement improves the understanding of the deep drawing
process, their works are not complete because they treat the deep drawing
problem as an in-plane pure radial drawing and are concerned mostly with
the deformation mechanics on the flange. However, it has been observed
experimentally (Chung and Swift [52]) that the die profile and the punch
profile significantly affect the punch load and the strain distributions
and therefore a further refinement is necessary by considering these

parameters in the analysis. Woo [53] performs such an analysis and then

69




is able to show that the solution obtained by extrapolating the strain

distribution over the flange to the die throat predicts more straining
than the one obtained by taking the profiles into consideration.

Contrary to these numerous investigations on deep drawing with a flat-
bottomed punch, very few works are reported on the deep drawing of a sheet
with a hemispherical head punch (Fig. 29). Woo [58] analyzes this problem
by breaking down the deep drawing process into two component processes of
the pure radial drawing over the flange and the punch stretching over the
hemispherical punch head. He first obtains solutions for pure radial drawing
in the flange and then uses this solution at a point initially situated near
the die lip as the boundary condition for the stretching problem, and there-
by essentially matched the punch stretching component with the pure radial
drawing component at a particular point in the die profile region. !

Instead of this tedious process of boundary matching, it is desirable
to have a numerically efficient and reliable method which can treat the
problem in a unified manner. The FEM is such an alternative. The finite-
element model developed for the deep drawing problem is the one by Wifi
[44] with a limited treatment of friction. Also, Levy et al. [59] developed
the elasto-plastic finite-element program for cupdrawing based on the defor-

mation theory of plasticity.

2. Computational procedure

The entire sheet undergoing the deep drawing process can be divided
into four regions: the contact region with the punch head, the unsupported
region, the contact region with the die profile, and the flange over the

die. Different kinds of boundary restrictions are imposed depending upon
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the regions. For example, the flange is constrained to move only horizon-
tally along the die face, while the contact region with the die profile or
punch head should satisfy the kind of boundary conditions discussed in
Section V.

The only difference in deep drawing with a hemispherical head punch
from the punch stretching with a round die corner is the presence of the
flange which is free to slide over the die. The addition of this moving
flange is, in effect, equivalent to the addition of the third moving boundary,
because, even though the boundary separating the flange from the die profile
remains stationary in the space, it continues to move from the viewpoint of
the deforming sheet. To treat this we make an assumption on this third
moving boundary and see if it is true by checking the radial positions of
the nodes. If the new radial position of any node which is assumed to lie
on the flange or the die profile does not fall on the expected region after
converged solution is obtained, then the boundary assumption is modified.

Another point to be mentioned is the blank holding condition of which
there are two types: clearance holding and force holding. The idealization
of the deformation state corresponding to the force blank holding is the
plane stress state and the one corresponding to the clearance holding in
the plane-strain state. The present rigid-plastic FEM is built to handle
the plane stress state deformation and therefore a modification is necessary
to handle the clearance blank holding. No reported work on deep drawing
with a hemispherical head punch under clearance blank holding is available
and therefore in the present work only the deep drawing with the force

holding is analyzed. The blank holding force is implemented in the formula-

tion as a tengential friction force acting on the last node located at the




rim of the sheet. The distribution of the blank holding force over a finite

area near the rim can be handled without difficulty in the present FEM, but
this distributional effect turns out to be insignificant [53]. Therefore,
tangential frictional force is confined to the last node at the rim of the
sheet. The increment of deformation is controlled by the punch head move-

ment. The program is in Appendix D.

3. Results and discussion

The only available work on the complete analysis of deep drawing with
the hemispherical head punch is one by Woo [58]. Along with the numerical
solution by the finite-difference method, he also conducted an experiment.

The parameters are:

Material: soft copper

Stress-strain characteristics: o = 5.4 + 27.8&:0'504 ton/in.2
for € < 0.36; = (0.08208 + 0.42256960'504) bS 109N/m2
= 5.4 + 24.4&:0'375 ton/in.2
for € > 0.36: = (0.08208 + 0.37089¢°">">) x 10°N/m’
Blank radius: 2.2 in. = 5.588 x 1072 m
Radius of the die throat: 2.123 in. = 5.392 x 107~ m

Radius of die profile: 0.5 in. = 1.27 x 1072 n

Radius of punch head: 1 in. = 2.54 x 1072 m

Blank holding force: 0.5 ton = 500 kg

The solution by the rigid-plastic FEM is in excellent agreement with
the experiment for the flange part; however, over the punch head it predicts
more straining than the experiment when the friction coefficient of 0.04 is

assigned for the contact region over the punch head and over the die in the
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numerical analysis. When the friction coefficient is increased to a value
of 0.1 over the punch head, while the same friction coefficient of 0.04 is
used for the flange, the analysis predicts less straining over the punch
head than the experiment. See Figs. 30, 31, 32, and 33. The deviation of
the numerical solution from the experimental data gets larger as deformation
progresses, which is reflected in the punch load vs. punch depth relation-
ship in Fig. 34.

The lubricant used in the experiment is graphite in tallow and Woo sug-
gested the friction coefficient to be 0.04. In the analysis the practical
difficulty always lies in the assignment of a reasonable value of friction
coefficient because friction coefficient under a real sheet-metal forming
condition is hard to measure and it may even change during deformation.

Comparison of Woo's numerical solution with the experimental data does
not yield any better agreement than the present rigid-plastic FEM. In com-
paring his numerical solution with the experiment Woo made the correction
on the circumferential strain based upon the argument that the strain value
obtained from the analysis is the value at the neutral surface of the sheet,
while experimental data are obtained from the outside surface and therefore
a compensation for the thickness difference is necessary. There could be
a question about Woo's correction because the ratio of the punch radius
or die profile radius to the sheet thickness is sufficiently large in his
experiment that the membrane theory is justifiable. Besides, it seems a
more consistent way to consider the problem in the three-dimensional stress
state instead of the plane stress condition, which is the case used in Woo's
analysis, if the variation of the strain across the thickness is to be taken

into account.
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It is necessary to have more numerical solutions and experimental data
with a known friction state to assess the validity of the present rigid-
plastic FEM for deep drawing problems. However, the present rigid-plastic
FEM had dealt with other sheet-metal forming problems in a unified and
consistent manner and therefore it seems reasonable to expect its validity

for deep drawing problems when it is established for other problems.

T T e S
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SECTION VII

SUMMARY AND DISCUSSION

It has been made clear that classical variational formulations for the
rigid-plastic solid are not appropriate for solving the sheet-metal forming
problems. This is due to the nonuniqueness of the deformation mode under
certain boundary conditions. This nonuniqueness, however, can be resolved
by taking the workhardening rate into consideration. Such an introduction
of the workhardening rate into the formulation, on the other hand, necessi- {
tates the consideration on the geometry change. The available classical
formulation in which these two aspects are considered is not, however,
applicable to the statically indeterminate problems, sheet-metal forming
being one, because it is formulated in such a way that knowledge of stress
distribution is necessary.

Within the framework of Eulerian descriptions and the hypothetical

identity of the deformed configuration with the undeformed configuration,

further improvement in the applicability of the variational formulations
to the statically indeterminate problems is not possible. Therefore, an

incremental deformation at a generic stage is considered by separating the

deformed configuration from the undeformed configuration. The relevant
equations are expressed with the undeformed configuration at each step as

the reference frame and the variational formulation is established.

; From this variational formulation a finite-element model is developed
for the sheet-metal forming prlblems. In many sheet-metal forming processes
the membrane theory is justifiable and therefore this idealization is

introduced in building the model.
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Three basic sheet-metal forming processes, i.e., the bulging of a

sheet subject to the hydrostatic pressure, the stretching of a sheet with

a hemispherical head punch, and deep drawing of a sheet with a hemispherical
head punch are solved by the proposed method and its solutions are compared
with the existing numerical solutions and the experimental data. The agree-
ment is generally excellent and therefore the prime objective of the present
investigation has been achieved.

In hydrostatic bulging the strain distributions and the pressure vs.
polar height relationship predicted by the present rigid-plastic FEM are
in excellent agreement with the available numerical solution by the elasto-
plastic FEM and experimental data. The difficulty of satisfying the i
boundary condition along the fixed periphery experienced in the finite-
difference method does not appear in the present rigid-plastic FEM.

In punch stretching, to make the problem more tractable, the presence |
of the die profile is neglected first so that there is only one moving
boundary. This problem is successfully solved. Taking the die profile
into consideration is equivalent to introducing another moving boundary,
and while handling two moving boundaries simultaneously could be time
consuming, the present rigid-plastic FEM again proves to be efficient and
f reliable. The strain distributions and the punch load vs. punch depth
relationship predicted by the present rigid-plastic FEM are in excellent
agreement with the numerical solutions by the finite-difference method and
the experimental data.

We then investigate the influence of workhardening representation by

comparing solutions, computed by both the parabolic workhardening law and

the Voce equation methods. The two workhardening representations result
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in the difference of peak strains and load-displacement relationships, and

the difference becomes increasingly significant as punch displacement in-
creases. It is concluded, however, that the selection of a proper work-
hardening representation requires more experiments with improved accuracy
and control.

The present method is further extended to the deep drawing problem.
The strain distribution predicted by the present rigid-plastic FEM is in
excellent agreement with the experimental data over the flange of the sheet;
however, over the punch head, agreement is not as good. By assigning two
different values of the friction coefficient over the punch head, two
strain distributions are obtained; one predicts more straining than the
experimental data, and vice versa. Therefore, an improvement in the predic-
tion seems possible by giving the friction coefficient a proper value which
is between these two bounds; however, the validity of the present rigid-
plastic FEM for deep drawing analysis remains inconclusive at this stage
mostly because of the lack of comparable numerical solutions and experi-
mental data. This is apparently due to the increased sophistication and
accompanying computation time when three moving boundaries are treated
simultaneously and to the practical difficulty of determining proper fric-
tion coefficients.

It is concluded that the present rigid-plastic FEM can treat the sheet-

metal forming problems with efficiency and reasonable accuracy.
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APPENDIX A

PROGRAM FOR THE INITIAL GUESS FOR HYDROSTATIC BULGING ANALYSIS

This program is to provide the initial guess and initial geometry

for Appendix B. It is based upon the analysis by Hill [23].

(I) Data preparation

1. Read NUMNP (I5)
NUMNP: Total number of nodal points to be generated

2. Read RADIUS, DIS1, DIS2 (3F 10.0)
RADIUS: Radius of the sheet to be bulged
DIS1: Polar height of the bulge in the initial geometry
DIS2: Polar height of the bulge in the new configuration




i
!

GR10
GRID
GR1C
GRID
GRID
GRIN
Gorn
GRIP
GE 1N
GRIP
GRIN
Go1In
GRIC
GR1D
GRICD
GRIN
G210
(31
GRID
corn
Ge1D
GUD
GEIN
Ge1ID
GR1D
GRID
GR 1D
GRIN
GRIO
GR1D
GR1D
GS1In
GRID
GRID
GRID
GRIN

GR1ID
GRTD
GeIn
GRIN
GRID
GI1IP
GRID
GRID
GRID
GRIN
GRIC
GRIN
GR1IN
GP1D
GRIND
GRIN
GRIUD
GRPIO
GRID
GEIN
GPID
GRIN
GR1N
GR10D
GRIN
GFIC
GeIr
GRID
GRID
GRIN
GRID
GPID
GP1D
GPIT
GRIN
GRIN

O D NDRAdWN -

PRCGRAV GRID( INFUT ,OUTEUT ,TAPES= INPUT, TAPSE=OUTPUT (PUNTCH)
~
[t g e g
(s THI S PROGRANM IS TC CENERATE THF INITIAL GECOMETRY AND VELOCITY
€ FIELD FOR RYDRCOSETATIC BULGR PROALEM, FOLLOWING HILL
CAREEERERREEE R P SRR R Y IR PP AR AR AR IR FAR BB R TR IT P SRR R SRR S SRR S E SRR ISR EE RN I T &
(=

COVMMON 4(€(2000)

€

(=

Che kAR Er $SRSR SRR AIL BI VSR L AR A IR IRV CL L AR BN PRI IR RERE EREPNE XL A RLBRT R L KT
s NUMNP =NUMBER OF NCDAL FCINTS TC PE CENERATED

CREBBARRFBEIF R IIINR AN PN BRI R R ARSI H SR LNV AR TR R R F Y AR ER L R 3 &
c
REAC(S, 10C1 INUMNP

<
CRUE PR R A ARSI E AN I F LR LR E R LR R CE R RS R RS EF AR S A ST AR R I AR A RS AN AR n = g

N1=1

N23sAN1 ¢ NUNMAFE

NI=N24NUMNP

Na=ANI4NUNNFE

NSzNA+NUMNP

NS =NS +NUJMNP

N7=N6+NUVNF

NEB=N7+NUMNP

NG =A3+NUMNP

N1C=NS+NUMNP

N11=NIO SNUMND

e )

(4]

CALL GUESSC(AINI Do AIN2)IGAINT) AINAD)A(NS) JAINS) A(NT)AINR)JA(NS),
1A(N10) «NUMND)
{=
1001 FORWAT(1S)
sTDO
ENC

SURAROUT INE GUESS(RF 472 4CODE 4 SLOF ¢F4Z4URWUZ 4UUR UUZAUNMREY
DINENSTON RR(1)¢ZZ(1),CONE(L1)eSLOF(1)4R(1)1¢7(1)URCTIIUZ(1),UUS(T)
1,UUZ(1)

n

PZAD(S, 1001)RADYUS,MNIS1,0182
NUNEL=ANUMIF=]

XK=0

cIe=01s81

DR=QADIUS/FLGAT (NUNKFE=1)

N

&N K=xK+1]1
IF(K +EN0, 2)01S=CISE2
|RR=FACILS
OC 100 t=1,NUVNF
TFIK «SCe 1)IR(I)=FO
IE(K ,FCs 112(1)=0.
IF(RR LEQ. C4IGC TO 1CC
RP1=(RANJTUS*RACTUS/PE=FFR)/2,
R2=(RADTUS*RAMTLS/DIS4DIS) /2.
CI1S1=R2=-DIS
URT1) =l RPAR2=F1#FR=F2XCIS] )%*F1/(C]1*F] ¢R2#D2)
UZ(1)=({R2%AR4Q2AR 1=R 1¥DIS1)I*¥0 1 /(P 1%XR 140 2%=2)
CCNE(IVY=N,
SLNB(T)=C.

100 IR=RE=NE
UZ(NUMND Y =0T S
UR (NUMNE =04
IE(K JEG. 2)G0C 70 3C1

NO 700 1 =1,NUNNF
BUPARBEL VAR N
100 YUR(TY=UR(TLY
(4
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GRIn
GeIn
Gern
GRID
GR1D
GRIC
GRID
GRINM
GRID
GPIN
GRID
GRIN
GRIN
GPID
GRIN
GelIn
GRID
GRIND
GRIC

GRIM
GRID
GFPIN
GRIN

GeIn
| GeIn

N g TN Sy amr T P
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n

301

200

1000

CONT INUE
IFlK <« Te 2)GC ¥D %C

NC 200 T=1,NUMNE
UBCIV=UR(TI=ULRI(T)
UZC(IY=UZCI)=tLZ (1)
CONTINUSE

COD=(1V=3.0
CONE(NUMND )= .0
SLOCE(NUMAP } =0 o0

DC S00 1=1+4NUMNP

RRA(TY) =L (I I4LLRCT)

7ZCI¥=2C1)e0UZCT)
WRITE(541000)VT,FRET I, ZZCTDUURCTY,UUZ( I, SLARLTD
WRITE(S5,10000 1 FRET1),701),USCI)L7(T),SLOPCT)

BURNCH 10114 14COPSII N FRIT)GZZCTDILURCT)I UZ(T)LSLOPIT)
CONTINUE

FCEWAT(4F20.15)
FORMAT(IS,FE,7,5F10,7)
FORMAY (3F10 .00
FORMAT(IS ,€F10.7)
QETUIN

ENP
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APPENDIX B

PROGRAM FOR THE ANALYSIS OF HYDROSTATIC BULGING

This program is for the analysis of hydrostatic bulging.

(I) Data preparation

1. Read HED (A 12)
Output title

2. Read RVALUE, T, ACOEF (5F 10.0)

RVALUE: Normal anisotropy parameter
Set 1.0 for isotropic material

T: Initial thickness of blank

ACOEF: Accelerating coefficient
To start with, set 1.0

3. Read ITER, NREAD, ITCONT, NFORM, NPUNCH, NPRINT, FLIMIT (6I5, F 10.0) ¢
The program control card
ITER: Number of iterations to be executed

NREAD: 1, if new data are to be supplied;
0, otherwise

ITCONT: O, if computation starts at the very beginning and first/
second steps are included in the steps to be computed;
1, otherwise

NFORM: Number of steps to be computed

NPUNCH: 1, if solution is to be punched at the end of each step;
0, otherwise

FLIMIT: Value of (error norm)/(solution norm) required for
convergence. To start with, set this .000001

4. Read NUMNP (6 I 5)
NUMNP: Number of nodal points

5. Read YVALUE, PRESTN, EXPNT, PRESTS (4F 10.0)

Material characteristics are specified.
Stress = YVALUE* (Strain + PRESTN)**EXPNT + PRESTS




6. Read PRES, DPRES (4F 10.0)
PRES: Current pressure value

DPRES: Increment of pressure

7. Read N, CODE(N), R(N), Z(N), UR(N), UZ(N), SLOP(N), (I5, F5.0, SF 10.0)
Nodal information

N: Node number. Node number 1 is at the rim of the blank and the
last node is at the pole

R(N): Radial position of the node
Z(N): Axial position of the node
UR(N): Increment of displacement in radial direction
UZ(N): Increment of displacement in axial direction

SLOP(N): Slope of the element
Set this 0.0

CODE(N): Type of boundary conditions:
1.0, if magnitude of UR(N) is fixed;
2.0, if magnitude of UZ(N) is fixed;
3.0, if magnitudes of UR(N) and UZ(N) are fixed;
0.0, if neither the magnitude of UR(N) nor UZ(N) are fixed

In subroutine PRELIM the interpolation of data is built in.

8. If NREAD = 1, the input data is to be placed behind nodal information

cards

T E——
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PULGF 1 FRTCRAM FULGE (TNPUT ,OUTPUT , TAPES= INPUT , TAPE €=0UTPUTY ,PUNCH)
BUL GE 2 C
PUL CE 3 CHEARIRN AR SRS RI BRI I PR AL AR SRR R P IR ER R A PSR RRE RS RS L R R TR RN R R R R E kg
AULGE L3 L4 THIS FROCGKANM 1S TC ANALYZE THE HWYLCRQOSTATIC QUL GE)
BUL CE 5 [ L e e N T e e
PULCE 6 €
AW GE 7 COMNOR/GERCON/NUMKE (RNUNEL JHEN(12) (CLL «NEC,NFOEM, Y IFLD,TEST, ITER,
RAUL GE R INREAD(NOUNCH(NPR INT RVALUE , T ,MFEAND PRNFAD,SACTUS PRES,NEES €
RUL 5F 'S COVMVIN/NATERL/YVALUF PRESTN,EXENT ,PRESTS
BUL GE 10 COMMON/ZTISOTPY /R VAL L
PULGF 11 €
RULGF 1 <€
PUL G< 13 [ R T s s T e s e T T T
BULGE 18 c ERCGRAM IS FOR CONTPOLLING THE DIMENSINN OF THE COMPLETE
AUL GE 15 (4 OROGRAM, ITS PLRPOSE IS TO PEEVFAT ASSIGNTNG & LADGER THAN
RUL GF 16 € NECESSARY DIMENSINN FOF ANY AQBAY THFEOUGH THE USE 0OF THE
BUL GF 17 c FOLLOWIAG STATEWNERT
PUL CE 18 [ T R I T T T R e T T s A s Y
8ULGE 19
AUL GE 20 COMMNON A(CE000)
PULGE 21 €
/UL GF 22 NFIZLD=5000
BuL CE 23 (=
BULGE 2a (@ R e
BUL GE 25 (S NFIELD IS THE NIMENSICN OF ARRAY A, ITS VALUE CAN BF NETERMINEC
RUL GE 26 c ORECISELY BY RUNNING THE PEIGRAM ONCE.
RUL GF 27 (e 22 2 e s s s s
AUL GF 28 C
BULGE 29 €
RyYLGF 20 TEST=1.
QUL CE 31 €
BULGE 32 REAC(5,1000) FHEC
BUL CE 5 READ(S5,1004) SVALUS ,T,ACOEF
RULGE 3a READ(S54,1003) ITERNRFAC, ITCONT JAEORM NOUNCH NPCINT FLIVTIT
RUL GE s REAC(E,10C3) ANUMNP
RAUL CE 36 REAC(5,1008) YVALVUFE ORESTN,EXFNT,FRESTS
UL GE 37 READ(S5,1008)PRFES,FEEES
BUL GE 38 CHRERREE XA B AT R R AT L R PR R AR A T AR R A AR E RS F IR AR AR A R AR AP R T TR T AR R S RN
BUL GE 39 (2 HED=0QUTPUT TITLE
RUL GE 40 (= RVALUE=VALUE CF THF ANISOTROCPY CARAMETER
AUL GE 41 (= ACNEF=ACCLLERATING DS DFCELERATING CNEFFICISNT OF FONVEFGENCE
AULGF a2 C NPEAD=N, IF TC OYFASS THE REACTIMG STATEMSNT IN SURRQUTINE PLAST
BULGE &3 (= ITCONT=0, IF CCMFPUTATICN STARTE AT THE VERY REGGINNING ANC FIRST/
BULGF as L= SECCNC STEPS APE INCLUDED IN THZI STEPS TC BEF COWMPUTED
AUL GE as G =1, CTHEFRwTSE
AUL GE a6 c THIS INDEX J€ RELATED TC THE DTISHENMIKATION OF STYSEP S172:=
AULGE a7 G NFORM=NUMBEF CF STEFS ASSIGNEr PEF FUN
QUL GE 48 G NPUNCH=1, IF CATA AFRT TC BE CUNCHED
BULGFE 49 G =0, OTHERWISE
AULGE 50 Cc FLINIT=VALUE CF (EFPNE NOPMI/(STOLUTION NCBM)Y FSQUIRED
RUL GE 51 C FORF CONVERGENCE
RULGF 52 € NPRINT=1, IF ACCAL FCINT DATYA ARE TC BRE PRINTED
BUL CF 53 = =Cy DTHER W] SE
RULGE S4 C NUMAP=NUMEBER CF NOCAL FCINTS
BULGE sS c PRES= CURRENT PRESSUFE
BUL GF 56 (= DPRES= INCREMENTY OF THE PRE SSURE
BULGE L g [
RULGE se c YVALUE, PRESTN, EXPNT, PRTSTS AFF T[ EXPFESS THE WNFKRAPRENING
RULGT 59 G CHARACTERISTICS OF THE PLANK
AUL GF £0 (= CTRESS=YVALUEX(PRESTA4STRAINI®*EX ENT4PRESTS
BUL CE 61 C
BULGF 62 Cc NEC=NUMBER CF ECUATIOAS YO 8% SNOLVED
AUL GE 63 c NUMEL =NUMBER CF ELEWENTS
BUL GE 64 c MEAND=BANC WICTH
BULGF €S €
BN AT 56 T Y Lt et R Rt it R R T e S e e T
RULGF 67 [~
BUL GE 50 C
RULGE 59 NUMEL =NUMNP= |
AUL GE 70 RVALI =PVALUE
BUL CF 71 MAAND = &
BULGE 72 NEQ=NUMNF®2
AUL GE b NO=NEQ
RUL GF Ta NEL =NUMEL
AULGE 75 c
PUL CF 76 N1=1
BUL GE 7 N2=N]&NMNP
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RUL G
BULGE
RULGF
BUL CF
RUL CE
|ULGE
PULES
AULGE
PUL GE
BUL CE
AUL 5F
BUL CE
RULGE
UL G
BULGE
AULGE
PULCE
AL GE
PUL CE
RULGE
AUL GE
PULCF
BUL GF
UL CE
PUL GE
AUL GE
RULGE
AULGE
QUL GE
BULGF
aunGF
UL CE
AULGE
BUL GE
BULCFE
UL GF
PUL GE
AULGF
PULGS
PULGE
8UL GE
AUL CE

AUL GE
RUL GE
AUL G5
BUL CE
AULGE
BUL GE
PUL GE
|ULGF
RUL GE
AuLGE
RUL GE
AULGE
AULGE
AUL GF
AUL GE
RULGE
PUL GE
BULGE
BUL GF
BULGE
aUL GF
AULCE
RULGE
PUL CF
RBULG
AUL 6%
PULCE
RULGF
AL CE
ay Gf
AL 5"
BUL G7
P CT
AULGE
ALL GE
PULCE
ayLGE

121
122
122
128
125
126
127
128
129

145
150
191
182
53
154
1€
15€
1%%2

NI=h2¢NLUNF
NA=NIENUMNG
NS=NA +NUMNF
NE=ZNSeNUMNP

N7 =R6 $RUMNT
NEzATeNUNEL
NQ=NAsNUMEL

N1 0 =NO+RUNMEL
N1T1=N10+NUMEL
N12=N114NUMEL
N17T=N]24RAUNELE
NI14=N1T4NUVEL 4
N1IS=KN14 +NUMEL 32
N16=N1S+NEQ
N17=N16+NEQEMEAND
N18=N17+NUVEL
N1I=N1R+NUMEL

c
&
CALL FSELIM(E(NLI)IsAINZI,A(NT),E0NA)AINE) AINE))
r
IFI(N1Q <LZe NFIELT) GC TO 100
wRITE(A,1001) N1IC
SYCFE
100 CONTINUE
WRITE(A,1002) N1IS
<
CALL PLASTUACNT) ACNR2) JAINI) AING) A(NEY JAINA ) A IR ), A(NA ), A (NT),
TAINIDILAINTII) GAINTI2IAINIZ)AINTIA) AINISY AINTE) JAINIT) AINLE),
PNCWNELFLIVMIT , ITCONT, ACCEF)
(=

1000 FORVMAT(12AK)

100) FORMAT(///% THE DIMENSICN OF THT ARKAY (A) TS TOO SwALL*/
i® THE ST126 CF THE AFRAY (A) MLST RI ¢, °7)

1002 FORNAT(//% THE NECCESSARY SI2S CF THE AFcaY (&) IS*, I7)

1002 FOSMAT(ETIE,F1C.C)

1008 FOENAT(AF]N,0)

100E FNRMAT(AIE,F1(CaC)

€
STGFE
END
SUBRPOUTINE PREL IMIF «7¢LR U7 CCCESLER)
COMVON/ CENCON/NUMNE g NUNMZL ¢ HED( 12) ¢DLL JNZONFOEM G VIZLD TEST I TER,
INRZAN JNCUNCH NORINT , SVALUE , T, MPAND ENF ARG DATTIUS (RPRES,,NPPES
<
c

DIMENSTION RO1162(1)+CCDECL1) JURETY qUZ(1)SLTR(L)
CRHERRE TN E N AN AR R LA AR A EE I RN SR AR R R AT E A S A MY R AT LA I TR ERR RN PR A EERR G R LS KV A TN
c REA® AND PFINT CF CCATRCL INFCFMATION ANM WATERJAL FONEFETIES MEINQO12
CREZRRE P E IR E I U Z RIS F P RN R TP P LN T R R LR P P L IR AR LA S AR I T AP EE AT TR T W LT *NVA INOD &

S0 CONTINUE

WE ITE (£,200C) FED (NUMNP ,NUMEL

CALL HARD(O4oYIELD)

WOTTE(€42010) YIELD

WRITE(6,1009) ITEE

P
CRELXF PR LR AR BEF I PR A FARIFEP L R FHE P P IR RN R R R Y s AR SR X TP AR LTRSS L NS X VA TAOQ A0
{ = REAT ANC PRINT CF NCDAL ECINT CATg vATNDO2])

CHERF A RAF AL I E R SRR R PR AP AP R R ET ARG RLF I PR BT AR P p gt Ryt A RAR P AR INAD 50
(
L=0 MEINCC e
IFINPRINTFQeCY G TN £C
WEITS (€6,1118)

WRITE (£,2008) i TNOOD
50 READ  (5,1002) NefCPEIN),GIND 7 INDLUE (N),UZ(N),SLOPEN)

NL =L+ ¢

7X=N=L ?

IF(L <ECe O) GC TC 79

NE=(S(NY=RP(LIY/7X ~a

P2=07(NV=2(LY )/ 7% -

NLEBRAURINI=US (L) /7X
OUZ2(NZINY=U2(LYY /77X
NS=ISLOPIN)=SLODILYIV /27X

70 L=L#*
IFI(N=-L ) 100,90, 70
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I UNCLASSIFIED AFML=TR=78=120

END
IILHI
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PUL GE 188 80 CANE(LI=0.0 MAINOOA3

AULGF  1Se RL)I=R(L=1)eCF A INOOSS
RUL GE 160 ZELI=7(L=1)4D?
AULGE 181 UR L )=UP (L=1)+0UR
BULGE 162 UZ(L)=uZ(L=-1)elUZ
BUL GF 1613 SLN2HLI=SLOP(L=-1)4NE
RULGE 164 Gn 10 7o MA INDO&S
AUL GE 16 90 IF(NUMNP=N) 100,110,60
PULCGE 156 c
AUL GE 1587 100 WRITE (6,2009) N MAINOOE2
PUL GE 168 CALL FxIY MR INDOS3
BULGE 16¢< c
BULGE 170 110 CONTINUE A INOOSE
BUL GE 171 WRITE (642002) (K CODEIK)JRIKY,ZIK) UR(K) JUZ(K) ¢SLOPIKY (K =] , NUMNG )
BULGE 172 C
BUL GE 173 NEN=3ISNUMNP
& BULGE 174 WEITE(641122) NEG,MRANC
1 AL GE 178 CHERAREREFAEEXRE AR ERIRER R AR R R RR SR P AP AT R R R E I F R RN NI RN RS BERFEF R a4 INO11S
BULGE 17¢ 1002 FORMAT (15,F5.0.551C.0) MAINOL22
BULGE 177 1003 FORVAT(1615)
RUL GE 178 1004 FOPUAT(TE,2111.,2F10.€)
BULGE 179 1005 FORMAY(215,4F10.0)
RUL GE 180 100€ FORPMAT(// % THE NCCAL FOINTS 2T wKICH FNSCE CALCULAY IONS ARE CESI®
RULGE 181 1ER* 7/ 201%)
q BULGE 182 1007 FORVAT(1H] 415X, 39% LINEARLY CISTFIRUTSC ROUNCARY STRESSSES/
RUL GE 183 1 /7 €OH NODE 1| NMDE J PRESSURE 1 PFESSURE J SHEAR 1
BULGE 182 2 14+ SHEAR J)
RUL GE 18¢ 1002 FORVAT(2]13,4E15.5)
RUL GE 185 1009 FORMAT(///% MAXIMUM NUNRER OF TTEFATIONS ALLOWED FOR EACH INCREMEN
BULGE 187 17T =%, I3)
SUL GE 182 1114 FORMAT(1H1, 3SH NTDAL FCINT INFCENATICH BEFAEE SCALING/Z)
BUL GF 18¢ 1122 FORWVAT(///7 % NUMREF OF EQUATICNS =%, Tay
1 BUL G 160 1 * FANDWIDTH =%, 14/
BUL CE 191 2 * CIAGONAL ELEMENTS =%, J&4 )
8SULSGE 192 2000 FORMAT (1H 12A4/7
BUL GE 192 1 30H0 NUMRER CF NODAL FCINTS===e== I3 / ~MEINO127
AUL GE 108 2 37F0 NUMBER OF ELEWENTSmememeeeee= [3 /)
RULGF 188 2002 FORWAT (112,F12.2,2F12.3,3E24.7)
RUL GE 196 2003 FDIMAT (1T1123,41€,1112) VAINO 137
AULGE 197 2004 FOFNAT (/ % AGCAL ©7INT TYDPE OQ=0OFDINATE 7=NIIOINATE © LD
RUL GE 198 1AD OR NISPLACEMENT 7 LCAD CF CYISPLACEMENT RETA=SLOPE =)
BUL GE 19¢ 2005 FORMAT(/74,%FIORCES SOSCIFIED AT NODAL POINT*,//,
BUL GE 200 1 ®= ANODAL PT, ELEVMEATY ELEVENT2 DRESSULRE SHEASw, /)
RUL GF 201 200C FNIMAT (26HCNODAL PNINT CARID EREOR N= I5) vMaAINO1&S
BULGE 202 2010 SCSMAT(/7 * INITIAL YIELD STRESS = =, F15,7//7)
SUL GE 202 QS TLRN
RULGE 204 END
QUL GE 205 SUBROUTINE PLAST(F ¢7,UF eUZ 4 N TE (SLOP YV ¥YXSEH] (CEHT (DL ,STS,.TEPS,
PULGE 207 1EPS PeATHICK PHT NOINELFLIMIT, TTCOM T,ACOFEF)
PUL GE 208 (=
FULGE 209 CEEREIEEARRARAEER IR A B NR PP AR EFPRR N SR P P R AR ARSI R A SR P EA PR LS RSN EARE R A NEE R &
BULGE 210 C PLAST IS THE CONTROLLING SUSRCU™II T
RUL CF 211 CEREAT BN AR RS R R R R R PR A RN L R RRE RN R R R A PR P R R RE Py AL F R P L AP LR NS RE E &Y
BULGE 212 C
AU GE 213 COMNCA/GENCON/NUNMND (NUMEL ¢ HET(12) ¢NLL ¢NSCNFCSM Y IELD, TEST, ITES .
PUL GE 214 INPEAD(NOUNCHNOE INTRVALUE o T, MRAND PNRAN ,FANTUS ,FRES,DP]F S
BULGE 21% COVMMON/CONQUAC/SS (8 ), WT(8) N(2,2),S0FT1
PUL CE 21¢ COVMON/FORVE /FACT (DFACT
PULGE 217 4
BUL GE 218 DIMINSICN RI1),2(1)UF(1),U701),CCREC1) SLNPLLII YY), ¥YYC1),
BUL GE 219 1TEPS(841)14Bl1)AINOVII THICK( 1) ,CPHI(1) (SPHT(1) ,DLI1),FPS(a,1),
RULGE 220 PPHTI(1),4STS(3,1)
BUL GF 221 c
RULGE 22?2 (~
AUL GE 223 OF ACT=NERES
AUL CE 22a FACT=PPES
AULGE 22¢% c
PULGE 22¢ SE€(11=0.L€113€211¢&
ayLee 227 SS(2V1=0.32G9R10487¢
UL GF 228 SS() ==cC(1)
BUL CE 223 SS(a)==cS(2)
AULGE 230 4
RUL GE 2M DC 442 N=1, NLMEL
RULGE 232 THIZC (N Y =T
RULGF 2723 NN 482 1=1, &
BUL CF 23a TECCS(I,NV=0.
3 PULGE 235 TEPS(4,N1=0.0001
BUL GF 226 842 CONTINUS |
RULGE 237 c
AL GE e2® et
{
90 ’
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BULGE
BULGE
PUL GE
AULGE
AL GE
BULCE
PULGS
auL G*
PULGF
BUL GE
PUL CF
BULGE
AL GE
BULGE
BULGE
PULCE
SULGF
BUL GE
AULGF
RULGE
BUL GE
BULGE
BULGF
PULGE
BULGE
RUL GF
PULGE
AUL GF
AULGE
SULGE
AUYL GE
BULGE
AW G%
BUL GE
BULGE
BUL GE
auLGT
8SULGE
PUL CE
BULGE
BUL GE
AULGE
BULGE
PULCGE
AULGSE
UL GE
BUL GE
PULGE
PUL GF
RULSGE
8UL GE
PUL GE
AUL GF
PUL CE
BULSGE
BUL GE
BPUL GE
AULGE
BUL GE
BULGE
BUL GE
BULGE
AU GE
PUL GE
AUL GE
RUL GE
BUL GF
PUL SE
PUL CE
AWUL GF
euLcE
BULGE
ayLGF
BUL GE
PULGE
AUL GE
BULGE
AL GE
BULGE
AULGE
AUL CE
PULGE
RUL GF
BULCGE
PULGE

230
240
261
242
247
244
288
246
247
249
240
250
2%1
2¢2
2¢1
254
253
2%¢
257
258
259
260
2¢€1

262
263
264
265
26¢
267
2¢en
269
270
27
272
273
274
27%
27«
277
278
270
280
2m

282
282
204
28s
2e¢
287
288
2Rs
290
291

292
291
294
295
266
297
298
29¢
3oo
301
302
303
08
0%
304
307
08
309
30
311
N2
3
314
ns
31«
nv
ne
319
320
321
322
327

CHEBFRSRIRSRIASRAP IP IS FF SR YRRB AR RN S KT KW v RS s * ek
c IF THE COMPUTATION IS IANTEPQURTFC AFTFR A NUMRER OF STEPS
c AND RESTARTED, THEN NECESSA®Y CAYA NEEC PE FEED

CERERANPIPSEISIIBI RIS IR SRR AR SRRAI NP ISR I PSR VAR EERESFAERRE I SRS TR R &
P
IS (NREAC .LE. 0) GC TC 4ac
QFAT(R,1917) (URCIV, UZ(IDe SLOP(I), I=1,NUMNP)
IFCITCONT EQ. 1) GC TC 440
PEACIS.1017) ( R(I), Z(1), I=), NUMNP)
READ(S1017)((TEPS(IeN)o1=1,4), N=1, NUMEL)
QEAD(S, 1017V THICKIN] (N=1 NUVSL D
REAC(S,2223)FACY
440 CONTINUF
=
c
NSTEO=0
2100 NSTEP=NSTEP+]
c
<
CERERREXESCARASERERRE R R R AR AR RERA RN RR AR KRS A AR RE RSB X R AR Y B RS AN F SRR U AN RS
(< COMPYTE THE YIELD STPESS AND THE WOFKNAPDENING RATE
CHRARSEASEEERF AR AR I P ARBRERIP I RS RIS AR BRI RN S LI RRRERRAREEREERREBE RSN EE &
c
€O 220 N=1, NLMEL
CALL HARDITERS(A.N).YY(N))
CALL HARD2(TEPS(&.N}YXI(NI)
220 CONTINUE

c
c
c
WPITE(E,1007) NSTEE

c
c

€59 CONTINUE
(=
CREXERRREARSFXERRPR BB R R R EAR EE R AR AR AEENBEEETE T ER LR L RN K ESS T PRSI PLE BRI R RS
c DETAIL CF THE PRESFNT CONFIGURATIGN
c SPHI=SINE OF ANGLE EWI
c Cor I=CNSINE OF ANCLE PHI
c DL=ELEMENT LENGTH

T g L e e e
(4
WRITE(A,1071)
CC €90 N=], NULVEL
NP1 =N+
DR=R(NI=RINP1)
CZ=ZINP])=2(N)
DL(N) =SCRT(DR*DR4CZ%*C2Z)
SOETIINY=CR/CLINY
CPHI(N)=DZ/CLIN)
PHI(N)=ASIN(SPHI(AN))I*]1 20, /3,181%6
WP ITE(E 1030 IN,PHIIN)  THICK(N) (M (N)
€S0 CONTINUS

FF1 =RVALUE+!1 .

RCANST=3 %001 /( 2% (1. ¢PVALUF4TVALUFY
Dl1+1)=RP 1 $RCONST

D(1 42V =RVALUE*RCTAST

NE24101=N( 1,20

D(2421=0(1,1)
CLAMDA=RP |$3P 1 /(1 .¢RVALLE+QVALUE)Y

PO ISON=RVALUE /RD

0C 2000 K=1, ITER

0N

CALL STIFF(R,Z,UR,UZCODE4SLOFYY Y X SPH] (CPHI ,OL +EPS,
1THICK JA B (NC)

SR ARI AP ARIRI VPSS N RG AP A ARV R PR RN AT AN R XA XA AR E R AR R L R XA R IR RIS ST S

INTEODUCT JON CF ROURCARY CONDITION
ARAERRRS IREN AN R PR AR R R RT ER AR P AN PR S AR IR TARR SRR R A SR D nkPr RS s esnE RS

L EaNas EaNa)

CALL MCDIFY(CCOE oA P NUNNE,NEC ,VaANT)
e
c..t.'t‘---‘.‘t.l.t.-..."'O‘.Q'.'tl’I...'..'.'.l..'.l.l’.-....‘-.."..t
[ AANDED EVYMWETRIC SCLLTICN
C.t"‘l'.."...".l.-O.”"ID...’..‘..'-u.n.t..-'.l'..l..""t"..'."..
¢

CALL TITAINEQMRAND &)

CALL PACKS (NEG,VPANE,A,P)

nAan
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| & PyL CE a2a NP 130 11, NUMNE
RULGE 32« 12=3%71-)
BUL 6% Ja¢ 1P=17=1
RUL GE 327 1s=1741
auLGe 228 URL1)=URLIV4EIIRIBACCEF
RUL GE 320 UZEIV=UZ(1)+R(1ZV*ACTEF
AULCE 310 SLOF(T)=6LOF (1) 4P(1S)*ACOEF
RUL GS 23] 1320 CONTINUFE

n

AULGE 332
BULGE 23T (=

2 syLcs  11a WEITE(€,101€) K
PUL GE 35 WEITE (€ ,100£) X
AUL 6% Ixe NO 77F 131, NULMAF
RUL GE 337 12=2%]~)
. AULGE e 1F=12-1
| Ry CE 23c 1€=1741
E | RULGE 340 WEITE(S,1002) T,RUTRIECIZIGECISIUFITI UZ(T) SLOP(TI)C(T),2(1)
& auL GE 2a) 776 CONTINUE
BULCE 342 c
RULGE 34 €
BUL GF kLY 3 (=
QUL GE 385 [ T L L s s
auL GF 34 ” CAMPUTE NOGM CF EFRCP ARD NTAW NE SOLUT 19N,
YL GE 347 CRe bt el AR B RSS2 IR IS R EAP AR FI AR NP RN F P R R E BRI F MR r Rk e AP R I MY KBS &
BUL GE 3419 ENCREM = 0.
auL GF 349 SNIRM = Ce
RULGE 329 €N 134 1=1, NUMND
PULGE 3sy 1Z=3%1=1
PUL CF %2 1°=12-1
RULGE 393 1S=12+1
RUL RS 3sa ENORM = ENORM ¢ BITIRIZB(IR) ¢ P(I2)1=0(17) « P(IS)=R(1S)
AUL GE X% ENNPM = SNORM ¢ UP(TIRUR(TI) ¢ L2(I)%UZ7(1) « SLIP(I)I®SLAD(])
| BULGE  1%¢ 134 CONTINUS
PUL CE 3sT ENOBM = SORT(ENCRM)
AULGE 358 SNCEM = SORT(SNOEM)
aun GE 3s< ESNCaMaENDOM/ENCOW
PUL CE 360 WRITZ(E,1015) SNOPWM,INCFV,ZSNTOV

BULGF XEY
PUL GE €2
PULGE 383 131 CCOATINUE

[ala]

AULGS 3¢e [
RULGE 38% c
BULGF R X (=
-OLGF 3&7 CREBRFARERABREFEXRIX RV IERE RV EEERE Xr AR RS rERT B EFF VL ERRENE FE L RERFRRL R R X
AULRT 368 [ CNVFUTE STRALIN FRCM THZ NEVY GUESS,
BUL GF 3€9 4 EPS(1,N)=INCREVERTY CF WEQIDTIAN STELIM
BUL GE 270 (= EPS(2,N)=INCREMENT OF TANGINTIAL STFAIN
BULGE 37 (= EPS(IN)IzINCREVMENT CF THICKNSESS STRAIN
PUL € 22 CRRAkSPRERRPIR SR ANRR SR AIRNF SR RARR TS AR PR S EnR Pt AP kAt SR R npr kR R g AR Ny AR DE"
BULGF 373 (=
AW GF 274 €
BUL CE 37% C" 200 N=1,NUMEL
RULGE 27e NE] =N41
BUL GE 7Y oLL=DLIN)
AUL GE 378 SErzSPHI(N)
UL GF 37¢ CPHECPHT (N)
PULCE 330 AUZURIN)ISURINE] )
8ULGF ey AE=RE(N) #S(NF])
BUL GE 382 IR=C(NI=2INP])
BULGE 383 D2=2(NP1)~Z(N)
BUL GT 344 DU=URINI=URINF])
BULGE 38s CH=UZINOII=UZIN)Y
RULGE 386 EX12] o842, #¥0PXCU/CLL/0OLL42.%C2*CW/CLL/DLL*(NU*CU+Dwsnw ) /NLL/DOLL
BUL GE 387 EPS(1N)=SORTIEX1)~1.
BULGE 3as EPS (1 NIZALCC(] c4EPS(1,N))
AUL GF 38g EPSI2,N)=AU/AR
PULGE 390 EPS(24NI1=ALOG( ] c¢AU/ZARY
BULGE 391 EFS(3N)=~EPS(1 N)=EFS(2,N)
BUL ¢* 332 {
BUL CE 392 RO00 CONTINUFE
AUL GE 394 L~
BULGF 308 c
‘ BULGE  3c« TecT=0.0
AuL ¢E 197 WRITE(6,1026) NETEE
PULGE 388 [~
AUL GF 368 (=
PULCE 400 4
AULGE 401 [ T L T L T
PUL CE 40?2 c COMPUTE [NCREWENT NF EFFECTIVF <TRAIN
RUL GF 403 CHEFRAR RIS NN PRI IR AN P PRI IR IRR P AP PR CPRR PR ERR I PR LARREETERPRRENI RS
AUL GF 404
PULCE ans rO 222 N=1, NUMEL
RULGF ans EEEPS(] (N)
PULGF 407 ET=FOS(2,N)
PULGF a0R RAAR=00 | #(ESHESIETHTT) ¢ 2, 9CVALUERESSEY
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RUL GE
PULCF
RULGE
AUL GF
PUL CE
AUL GF
PUL CE
AULGF
AULGE
BUL GE
BULGE
PUL GF
|ULGE
RAUL GE
RULCGF
BUL GF
BUL CE
BULGE
UL GF
BULGE
AULGE
RUL GF
QUL GE
au GE
RUL GF
RAULGE
ayLGcF
BULCGF
AWUL GF
BULCF
BULGE
BUL CE
BULGE
AW GE
AUL €
"ULGE
BUL CE
AUL GE
UL GE
PUL GE
RULGE
BUL GE
PULGE
AULGE
AUL CE
BULGE
BUL GE
AULGE
RULGE
AUL CE
RULGE
RUL GE
BULGF
BULGE
PUL CE
RULGE
BULGE
RULGE
BULGE
PUL CE
BULGE
AUL GE
PULGE
AWUL GE
BUL G*
BULGE
BUL G*
BULCE
AULGE
PUL GE
BULGE
ARULGF
AULGF
8L GF
PUL CE
mULGE
UL GE
BUL GE
BULGE
BUL GE
BULGF
AL CF
BULGE
AULGE
UL GE

40°
417
411

412
413
413
41

431

ae2
ac
aca
ass
a6s
a4e7
aca
469
e70
a71
av2
ar3
ave
arr
avs
ar?
a7
479
480
a8y
a82
as3
aBa
ans
ane
an?
ase
a8
490
a9
492
491

CSPS(4N)=SORT(2.*RCCNST*ERAQ/ T, )

N o

CEERSSRRBRP A PRI R Y RBF YR ET AL SAREP AT A RZPRRATFRI SRR F XK ERER ARG Eu s S e dn y

C COMFUTEF STRESS RISTRIBUTIOM

C STS(1.NI=MERIDIAN STREESS

c STS(2NV=CIRCUMFERENT]BL STOFSS
€ STSEIN)=EFFECTIVE STRFSS

CREREREEBIRI R BEINII 2B AR BN R RPN IR SR AR IS AN X NP I R E ARG E IR KPP IR R Rk * =
c
STS(1NI=ZCLAWMTAR(ES ¢ POISONSETI®XYY(N) ZEFS(L N)
STS(2N)=CLAMPA®(ET + POISONSFS)IAYY(NI/EPS(A,N)
TFISSNDOREM LT, FLIMIT)TEST=1.0
N 443 =1, A
Q87T TEOS(TI N)=TEFS(IN)SEFSUI,NIXTEST
ES=STS( 1,N)
ET=STYS(2.N)
EFCTRS=ECSES+ETRE T2, REQI SONSE ST
STS(3.N)= SORT(EFSTRS)

nn

WOITE(S,100IINGEPSI1eN)TEPSII4N)EFSI2,N)TEPS(2,N)EPSI2I,N),TFO
1SC2INY LEFS(4,N) (TEDSI& N
IF(ESNOAM LTe FLIMITITHICK(N)=THICK(RNIXEXFISFS(I,NY)
222 CONTINUS
wWRITE(E,1027)

"

DO 230 h=1,NUMEL
430 WRITE(A,22S1IN,(STS(T NI T=1,2)

non

TF(ESNCRM LT. FLIMITIFACT=FACTADOFACT
IF(ESNAOFRY (LT, FLIMITINRITE(R (1028)F£CT
IF(ESNDRM L Te FLIMITIGC TN &£218

2000 CONTINUE
2200 CCNTINUE

438 CONTINUE

CEREARERF AR IR IR R R RR R P AR ARG R S AR RN AP RN AR N ER R P AR AR F R AT RN AT &
c NEW CONFIGURATION
CRERREEIRARARERIF LN R IARRS RN NS I I LS IIRPARFI RFERP RN S AR B RS FRRE AR E AR wr 3
e
CO 430 [=1, NUMNP
12 1=]
1Pz17=1
RUI)=R(I)4URCTIIPTEST
ZOEUY=2C(T)+UZIT)STEST
439 CONTINUE
777 CONTINUFE

[aWalal

IF(NPUNCH oEQ. 0) GC TO 310
PUNCH 1017+ (UF(I)Y,LZ(I), SLECF(I), I=1,NUMNB)
PUNCH 1017y (REIV1e7(T)eT=1s NLVAP)
OUNCH 1017, ( (TEPS(I N),I=1,4), N=1, NUMFL)
PUNCH 1017 (THICKIN) JAN=1,NUVEL)
PUNCH 2223,FACT

310 CONTINUE

IF(ESNCEM ,GT. FLIMIT)CT TN 2200

IF(NSTED LLT. NFORW) GC TC 21CO
c
2300 CONTINUE
S00 CONTINUE
{~
1002 FOAMAT(IS 3F12.7,85X,3F12.7:8X.2F12.7)
1003 FOFVAT(T7,11F11.6)
1004 FORMATU1€61%)
1005 FOEMAT (1H],% STRAIN-STRESE SOLUTICN AT STEP NUMAER =%,l14//
1 % Sle NDeooPR=STRPAINGeeZ=STAIN e THaSTRAING ¢ oFZ=STRAINe e «EF=STRAIN
2 0eelmSTAES , (o 74 TP e e TH= ST G s s R7=STRE S e EF =STRES, ¢ AVG=STRES e *
)
100€ FOOMAT(/// 20X, * DYSPLACEMERY SOLUTION AT ITERATICN NUMBER =%,T14
1777 20Xx, ®* PUFTUGEECY, 2€X, * TOTAL¥*, 20X, * DEFCOVED COCROD%®/

27/ - NP ov Dw DRETA (V]
3 - BETA L %)

1007 FOQVAT(IH] (70X *ITERATICN PROCESS FOF STEP*, 14)

1008 FORMAT( ECX, ® TOTAL R=LCAD =%, F12,.7
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BUL GE
BUL GE
RUL GF
BULGF
RUL GF
RAULGE
A GE
PUL GE
RULGE
BUL GF
RULGE
BULGE
PUL CF
RULGE
AUL GF
BULGE
RUL GE
AUL GE
BUL GF
AUL GE
AUL GE
BUL G®
BUL GF
BULGE
BUL GE
QUL GE
BULGE
BULGE
AULGF
AUL GE
AULGE

494
4cc
49¢
487
498
499
S00
501

50?
502
Soa
s0Ss
506
507
so0R
509
510
S11

s12
S13
S14
S1€
516
S17
si1e
519
320
521

€22
523
524

526
527
528
529
530
531
e32
532
s3a
s38
536
517
=38
539
540
sa1
542
542
sas
545
Sa¢
sa7
sas
540
S50
551
s52
553
554
ses
ss¢
557
s%a
559
=60
561
562
543
s6a
L{ 1]
s8¢
557
ccp
566
=70
=71
572
572
574

n

()

ANYANN

1 /7 60Xe * TrTAL 2-LOAC =%, F12,7
e / 60X, ®* TOTAL M=LCAC =%, F12,7)

1010 FORMAT( /7 % NODAL PCINT FOKCE AY SYEO =%, l4//
1%c0000seNeFeacoceeee®=FCRCEceceece?=FOPCEcccseeZ=STRESS ON DIE SUR
2FACE eee¥*)

1011 FOEMAT (IS,3F10.0)

1012 FOIVAT(TIG,EF17.5)

101F FORMAT (60X, * VELOCITY CONVERGENCEY ./

1 €0Xos * NCRN CF SOLYUTICN VECTOR =%, F13.R
1 /7 KCXy ® NCRV OF EFRCR VECTOR =%, F113.8
2 / 60X, * FRACTIONAL NOFM =%, F123,P)
1016 FOPMAT( * CISFLACEMENT SGLUTION AT ITERATINN NUVMRER =%,14)

1017 FORMAT(EF10.7)

1018 FCSWAY(////% CCES NCT CCONVERGI®//

1* TRY AGAIN WITH DECELLERATINN CNEFFICIENT =ACOEF= LESS TrAN®,
2F8.3)

1020 FORMAT(20F4.1)

1025 FORMAT (X 1€ IXgF12.€410XeI5:2XF12.€410X,13,3X,F126)

2251 FCRNVAT(1S5,4F20.7)

1026 FORMAT( ///%INCREMENTAL STRAIN=TCTAL STRAIN AT STEP NUMEBEP=%, J4s//
1%EL  NOoeeoeeS=STRAINceeoesTOTALe e e THE=STRAINGceeees TCTALe oo o THI=STF
2ATNcs oo e s TOTALe 00 s EF=STRAING . eTOTALeeo*)

1027 FOPMAT(///%SL e NOoaoeS=CTREC oo e THE=CTFFCSeee e EF=STPESSesee*)

1030 FRRMAT (/7 17,3F10.5)

1021 FORMAT(* GEQWETRY CF PRNFILFk//

1 *EL NNDeeeeeANGLE oo e e THICKNE SSecsee®)

1028 FOANAT(* FORCE AT THIS STEC IS %,F20.7)

2223 FORMAT(F20.7)

RETURN
END

SUBROUTINE STIFF(R 7 UF qUZ+COTE ¢SLOF,YY,YX,SOH] CPHI (DL +SPS,
1THICK AR 4NC)

COMNON/ CENCON/NUMNFE (NUVEL g HED( 12) ¢DLL 4 NEQNFOEMYIELD,TEST,] TEE,
INREAD NFUNCH NRPRINT ,RVALUE + To MEANC ,PNRAC, PACTUS , PRES, NPPES
COMMON/STEMAT /HI L) ¢P(646) e TEX,TEY (TE 7 ¢ THKL
COMVON/CCNCUAC/SS(2),WT(4),D(2,2),S0FT1

DIMENSION R(1V,201)14COCECL1DcUPCTINI UZ(L1)1,SLODC1Y RE1)AINC,1),
1 EPS(&,1),422(2) qUUIE) qVYY(1)oYX(1)eTHICK(IIoNL(2),SPHIC1),COHICT)
2.RR(2)

NN SO N=1, NEC

B(N)=0.

NN €0 M=1,MBAND
S0 ACAM)I=0.

WT(1)=0 .3478%48451)
wT(2)=0.,6521451549
WT(2)=wT(1)
wWT(a)=wT(2)

DC 1000 N=1, MUNEL
NP 1=N4+1

OLL=DL(N)
SPH=SOHI(N)
CPF2CORIIN)
R2(1)=F(N)
Z701)=7(N)
RR(2)=R(NPY)

Uul 1) =uRiIN)
UU2)=UZ(N)

UUC2) =SLOP(N)

UUl 4) =URIND L)
UU(S)IsUZINPL)
UUCE) =SLCPINPL)
THKL=THICK (N)SOLL
22(2)¥=7(NPL )
YGEYXINY

YHEVYY (N)

CALL QUANIRR 427 4UL sCLL ¢ SPHTPH VG, YH)

REEEEREARF AR REREE AN AR AR A E SRR R P T AR PR AR AR S L AR AR SR RSB R AR SRR SRR ek &
PERFORM THE ASSEMPLY OPERATIIN, RECAUSE VATSIX A IS SYMVETRIC
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(3 ANLY 1OPER WALF NF THE MATFIX IS CREATED. ANC THE STOPAGE FOR
aULGE S76 C MATRIX A 1S A SQUARE ABRAY AECAUSE OF ®ANDEC SYMMETEIC PRCPERTY
BUL GE L3244 Cosnds e SEPRIVSN PP IR SR ORI ShsBd R RaRD thRan sen
anGE sre
BULGE 579 20 200 1=1, €
BULGE 580 I1sn&y = 3 & 1
BULGE  sa) S(IIN=a(IINeHCT)
BULGE  S82 o 200 Jsi, €
AULGE se3 ¢
; BULGE Ssa ¢
AULGE  sas JJz N®3 = 3 & 3 = I1 ¢ 1
AULGE  SRe 15030 «LTe 1) GO Y0 20¢
. BULGE 587 ACTTJIISACTITLIINOP(T,J)
; BULGE  Sme 200 CONTINUE
! ®UL GF 589 (-
\ RULGE  S930 1000 CENTINUE
BULGE SS1 ¢
AULGE %92 ¢
BULGE 593 1001 FORVAT(///,* THE CIAGCNAL VECTCR CF MATPIX OF STIFFNESS®/)
PULGE 594 1002 FOPMAT(12E1143)
AUL GE 595 1005 FORVAT(// 29k ELEMENT WITH NEGATIVE AREL =, I5)
AULGE S96
BULGE 597 QETURN
AULGF  s9e NC
1
! BULGE 600 SUBROUT INE CUZD (RF, 2ZoUUeDLL ¢ SPF4CPHS24S1)
ARUWGE 601 €
aULCE 602 COMMON/1SOTPVY/RVAL1
BULGE 503 COMMON/STEMAT/HI6) (P(E16)y TEX, TEY TEZ THKL
BULGE 604 COMMON/CONOUAL /SE(4) o WT (&) 40(2,2) 4SOT]
BULCE  60% COMMON/FORVE/FACT.DFACT
BULGE €06 C
PULCE 607 DIMENSTON RROZD7Z(2) qUUIE) (P(2,&) XXLE &) JRZERCIE) OR(2,6)
BULGE  s08 DIMENSION RA(E,€) RP(6)
BULGE <09 ¢
PULGE 610 C
SULGE 611 RC2(QR(1)IeRP(2)1/2,
BULGE 612 C
BULGE 613 no 2 1=1,6
BULGE €14 /(1) 20.
BULGE 615 He1)=0.
BULGE  €1¢ DO 2 J=1.6
PUL CE €17 RA(T,J)=0.
AULGE 618 2 E(1.J)=0.
AULGE €19 ¢
AULGE 620 C
BULGE 621 C
: AULCE 622 SVALLE=RVAL1
‘ BULGE 523 02=22(2)=22(1)
BULGE <24 OR=RR(1)=RR(2)
BULCE 625 CU=UU(1)=UU( &)
RULGF  62€ OwsLU(S)=UU(2)
BULCE €27 AUELUC1)+UUCS)
AULGE 629 AR=RR(1)V4RR(2)
B8UL G= €2s €
BULCE 430 ¢
BULGE &7 C122.%08/DLL/CLL
MULGE €32 C2=2.%70/DLL/OLL
PULGE 633 €322.%07/0LL/CLL
BULGE 634 Ca=2.%D8/DLL/CLL
BUL CE 635 CS=AU/AR/2.
BULGE 636 C6=1.4DREC24C2%Ca+(CUSDU+DWHOW ) /DLL/DLL
BULGE 637 €7=2./DLL/OLL
BULGE  s38 C822./7AR/ AR
AULGE 636 COx1./SORT(CENV /24
PULCF 640 closcosce
AULGE  #41 C11=C1ecC2
AULGE 542 C12:r3sCa
BULGE 643 C
AULAE  s4s  C
PULGE 4% NES1=SOPT(CE)
AULGE 645 DET122.9C841.,
BULGE 647 C
BULGE 648 E12CO*C11/CES]
AULGE 645 E22-CO%C12/DEST
AULCE 650 E3s-E1
BULCE  8S1 cas-c?
AW GE 882 ES=1./A8/DETY
BULGE 653 E62(=CI1CHC119C11/2.4CSRCT) /NEE 1= 1%E )
AULGE  6%a E72-EC
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RuL CE 655 FA=C10%C11%C1Z/24/NESI~ELI*E2
BuLGE 45¢€ £Q@=z~-Ea
AL GF 57 €10=58
AUL CE 658 E115(=C108C1Z2%C12/2.4CS*CTV/NEE )= 2%F 2
RULGF 659 €1 23~ESKES
AuUL CF 660 c
PULGE 561 (5
AWLL GF 662 D= S=ALCG(DES])
PUL CF 6673 DET=AL"G(DET))
PULGE 564 CEERRAURRBRFRFEERBRF I BRR N SF AP IRV Fv I I P AN UR TR IR PSRRI RREERB G R R X SRR ERE AR
AL GF 655 c NES=MSRINTAN STRATIN TACFEMENT
E RUL GF 556 c DET2CIFCUMFERENT IAL STEAIN INCFEMENT
1 . AWLL GF €8T [ COMFUTATION OF EFFECTIVE STRAIN TNCPEMENT
AuUL CF 658 c S1=NSPIVATIVE OF MECIDIAN STRAIN INCREMENT wITH PESFECY TC uU(ll)
QUL GE 549 2 =D(DESHI/ZE(UUILDY
! AULGE 670 ¢ Z2=0(NES)/DILLI2))
AULGE 671 € E3=C(DES I/D(VUIS&))
AUL GE 572 c E4a=NI(NESI/DIULIS))
AUL CF 73 C ZS=DIDETHI/D(ULIT))
AULGE 674 c Ze=C(ErI/7CCUUCL )
AUL GF ers € E7=DCE1) /DIUL(4D)
UL GE 676 c ER=C(ELI/DC(UU(2V) |
RULGF 77 c €9=D(=3)/D(UUI2Y) |
PUL CF A78 C E10=N(S4)/DCUUI £))
AULGF 679 < E11=D(S%)1/C(UU(2))
RAUL GE 680 CEASREETF ERR R ARRRER TR RN S AR TR RRE X XN AP ARE RSP R ARSI RSP T nupEXr gyt dpuuirt ety
PULGE 631 <
AULGF g2 c
BUL CF 683 PVO 13RVALUE #1,
AULGE 598 QVF2=SORT (2 *<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>